
1 

Types, Operators and 
Expressions 

CSE 2031 
Fall 2012 

1 September 17, 2012 

Variable Names (2.1) 

  Combinations of letters, numbers, and underscore 
character ( _ ) that  
 do not start with a number;  
 are not a keyword. 

  Upper and lower case letters are distinct (x ≠ X). 

  Examples: Identify valid and invalid variable names 
 abc, aBc, abc5,  aA3_ , char, _360degrees, 
5sda, my_index, _temp, string, struct, 
pointer  

2 

Variable Names: Recommendations 

  Don’t begin variable names with underscore _ 
  Limit the length of a variable name to 31 characters or 

less. 
  Function names, external variables: may be less than 31 

characters allowed, depending on systems. 
  Lower case for variable names. 
  Upper case for symbolic constants  

 #define MAX_SIZE 100 
  Use short names for local variables and long names for 

external variables. 

3 

Data Types and Sizes (2.2) 

4 basic types in C 
  char – characters (8 bits) 
  int  ─ integers (either 16 or 32 bits) 
  float – single precision floating point numbers (4 

bytes) 
  double – double precision floating point 

numbers (8 bytes) 

4 



2 

Qualifiers 

  signed char sc;  /* -127 – +128 */  
  unsigned char uc; /* 0 – +255 */ 
  short s;  /* 16 bits, -32,768 - +32,767 */ 

 short int s; 

  long counter;  /* 32 bits */ 
 long int counter; 
 int is either 16 or 32 bits, depending on systems. 

 signed int sint;/* same as int sint; */   
  unsigned int uint;  

   0 – +4,294,967,295, assuming 4-byte int 

  long double ld;  /* 12 or 16 bytes */ 
5 

Qualifiers (cont.) 

 <limits.h> and <float.h> contain  
 symbolic constants for all of the above sizes, 
 other properties of the machine and compiler. 

 To get the size of a type, use sizeof( ) 
 int_size = sizeof( int ); 

6 

Characters 

  8 bits 
  Included between 2 single quotes 

 char x =‘A’ 
  Character string: enclosed between 2 double quotes 

 “This is a string” 
   Note:   ‘A’  ≠  “A” 

  c =‘\012’  /* 10 decimal; new line character */ 

A A \0 

7 

Characters 

8 



3 

Constants (2.3) 

 Numeric constants 
 Character constants 
 String constants 
 Constant expressions 
 Enumeration constants 

9 

Integer Constants 

 Decimal numbers   
 123487 

 Octal: starts with 0 (zero) 
 0654 

 Hexadecimal: starts with 0x or 0X  
 0x4Ab2, 0X1234 

  long int: suffixed by L or l 
 7L, 106l 

 unsigned int: suffixed by U or u 
 8U,  127u 

10 

Floating-point Constants 

15.75  
1.575E1  /* = 15.75 */  
1575e-2  /* = 15.75 */  
-2.5e-3   /* = -0.0025 */  
25E-4   /* = 0.0025 */ 
 
  If there is no suffix, the type is 

considered double (8 bytes). 
  To specify float (4 bytes), use 

suffix F or f. 
  To specify long double (12 or 

16 bytes), use suffix L or l. 
 

100.0L  /* long double */  
100.0F  /* float */  

 
  You can omit the integer 

portion of the floating-point 
constant. 

.0075e2  
0.075e1  
.075e1  
75e-2  

11 

Numeric Constants 

  2010 
  100000 
  729L or 729l 
  2010U or 2010u 
  20628UL or 20628ul 
  24.7 or 1e-2 
  24.7F or 24.7f  
  24.7L or 24.7l 
  037 
  0x1f, 0X1f, 0x1F 
  0XFUL  

  int 
  taken as long if 16-bit int  
  long (int)  
  unsigned  
  unsigned long 
  double 
  float 
  long double 
  octal (= 31 decimal)  
  hexadecimal (= 31)   
  What is this?  

12 



4 

Character Constants 

‘x’ 
‘2’ 
‘\0’ 
 
#define NEW_LINE ‘\012’ 
#define NEW_LINE ‘\12’ 
 
#define SPACE ‘\x20’ 
 

  letter x 
  numeric value 50    
  NULL char, value 0 

  octal, 10 in decimal 
  ‘\ooo’ 1 to 3 octal digits   

  hex, 32 in decimal 

13 

Escape Sequences 

14 

String Constants 

“hello, world\n” 
 
“”  /* empty string */ 
 
\”  /* double quote character */ 
 
“hello,” “ world” same as “hello, world” 
  concatenated at compile time 
  useful for splitting up long strings across several source 

lines. 

15 

Constant Expressions 

 Expressions that involve only constants. 
 Evaluated during compilation. 

#define MAXLINE 1000 
char line[MAXLINE+1]; 

#define LEAP 1 /* in leap years */ 
int days[31+28+LEAP+31+30+31+30+31+31+30+31+30+31]; 

16 



5 

Enumeration Constants 

enum boolean { NO, YES }; 
  The first name in an enum has value 0, the next 1, and 

so on, unless explicit values are specified. 
enum colours { black, white, red, blue, green }; 
enum escapes { BELL = '\a', BACKSPACE = '\b', TAB = 

'\t', NEWLINE = '\n', VTAB = '\v', RETURN = 
'\r' }; 

  If not all values are specified, unspecified values 
continue the progression from the last specified value. 

enum months { JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, 
AUG, SEP, OCT, NOV, DEC };  

 /* FEB = 2, MAR = 3, etc. */ 

17 

Limits 

 File limits.h  provides several constants 
  char CHAR_BIT, CHAR_MIN, CHAR_MAX,  
SCHAR_MIN, … 

  int INT_MIN, INT_MAX, UINT_MAX 
  long LONG_MIN, … 

 You can find FLOAT_MIN, DOUBLE_MIN, … in 
<float.h> 

18 

Declarations (2.4) 

  All variables must be declared before use 
  A variable may also be initialized in its declaration. 
 
 char esc = '\\'; 
 int i = 0; 
 int limit = MAXLINE+1; 
 float eps = 1.0e-5; 

19 

Qualifier const 

  Indicates that the value of a variable will not be changed. 
  For an array: the elements will not be altered. 
 const double e = 2.71828182845905; 
 const char msg[] = "warning: "; 

  Used with array arguments, to indicate that the function 
does not change that array. 

 int strlen( const char[] ); 

20 



6 

Arithmetic Operators (2.5) 

+  ─  *  /  % 
 
Examples: 
abc = x + y * z; 
j = a % i; 
++x; 
x++; 
x += 5;   /* x = x + 5; */ 
y /= z;   /* y = y / z */ 
What is x *= y + 1 ? 

21 

Precedence and Associativity (Pg 53) 

22 

Type Conversion (2.7) 

  float f; int i; What is the type of f+i ? 
  General rule: convert a “narrower” operand into a “wider” 

one without losing information. 
  So i is converted to float before the addition. 
  char may be freely used in arithmetic expressions. 
 /* lower: convert c to lower case; ASCII only */ 
int lower(int c) 
{ 
   if (c >= 'A' && c <= 'Z') 
  return c – 'A' + 'a'; 

   else return c; 
} 

23 

Arithmetic Conversion: Examples 

int 

int 
int 

double 

double 
double 

int 

double 
double 

int a=5, b=2, c; 
double x, y = 2; 
 
x = a/b;  

 // x = 2.0 
c = a/b; 
           // c = 2 
x = a/y; 
          // x = 2.5 
c = a/y; 
          // c = 2 

24 



7 

More Examples 

 17 / 5 
 3 

 17.0 / 5 
 3.4 

 9 / 2 / 3.0 / 4 
 9 / 2       =  4 
 4 / 3.0    =  1.333 
 1.333 / 4      =  0.333  

25 

Type Conversion: More Rules 

  Conversions take place 
across assignments; the 
value of the right side is 
converted to the type of 
the left, which is the type 
of the result. 

  Example: 
int a;  
float x = 7, y = 2; 
a = x / y; 

  float to int causes 
truncation of any 
fractional part. 

  Example: 
float x, y = 2.7; 
int i = 5; 
x = i;   /* x = 5.0 */ 
i = y;  /* i = 2 */ 

26 

Type Conversion: Even More Rules 

  Longer integers are converted 
to shorter ones or to chars by 
dropping the excess high-order 
bits. 

int i; 
char c; 
i = c; 
c = i;  
/* c unchanged */ 

 

int i; 
char c; 
c = i; 
i = c;  
/* i may be changed */ 
 

27 

Casting 

int A = 9, B = 2;  
double  x; 
x = A / B;   /* x is 4.0 */ 
x = A / (double)B; /* C is 4.5 */ 

int n;  
sqrt(double(n)) 
 

  The cast operator has the same high precedence as 
other unary operators. 

 
 

Doesn’t change the value of B, 
just changes the type to double 

28 



8 

Increment and Decrement Operators (2.8) 

  ++ or -- 
  Placing in front: incrementing or decrementing occurs BEFORE 

value assigned 

  Placing after: occurs AFTER value assigned 

k = i++; 

k = ++i; 

i = 2 and k = 1 

k =--i; 

k = i--; 

i = i + 1; 
k = i; 

3 
3 

i = i - 1; 
k = i; 

1 
1 

k = i; 
i = i + 1; 

2 
3 

k = i; 
i = i - 1; 

2 
1 

i = 2 and k = 1 

29 

Examples 

 int a=2, b=3; c=5, d=7, e=11, f=3; 
 f += a/b/c; 
 d -= 7+c*--d/e; 
 d = 2*a%b+c+1; 
 a += b +=c += 1+2;  
 
Note: Do NOT write code as above. Hard to read and 

debug! 

3 

-3 

7 

13 

30 

Relational and Logic Operators (2.6) 

 Relational operators: 
>   >=   <   <=   ==   != 

 Logical operators:   
 !  &&   || 

 Evaluation stops as soon as the truth or 
falsehood of the result is known. 

31 

Boolean Expressions 

 False is 0; any thing else is 1 (true). 
 Write 
 if (!valid) 

instead of  
 if (valid == 0)  
 

32 



9 

Bitwise Operators (2.9) 

  Work on individual bits 
 &   |    ^    ~ 
  Examples:  

short int i=5, j=8; 
k=i&j; 
k=i|j; 
k=~j; 

a = 1; 
b = 2; 
c = a & b; /*c = 0*/ 
d = a && b; /*d = 1*/  
  

  Application: bit masking 
#define SET_ON 0XFFFF 
int n, x; 
n = n & 0177; 
x = x | SET_ON; 

33 

Bit Shifting 

   x<<y means shift x to the left y times. 
  equivalent to multiplication by 2y 

   x>>y means shift x to the right y bits. 
 equivalent to division by 2y 

  Left shifting 3 many times: 

0     3 

1     6 

2    12 

3    24 

4     48 

5     ... 

13     49512 

14     32768 
34 

Right Shifting 

 It could be logical (0) or arithmetic (signed) 
 If unsigned, 0;  if signed undefined in C 

unsigned int i = 714; 
357   178   89   44   22   11   5   2   1   0 
 
 What if i = -714 ? 
-357  -178  -89  . . . -3  -2  -1  -1  -1  -1   

35 

Conditional Expressions (2.11) 

 exp1 ? exp2 : exp3 
 If exp1 is true, the value of the conditional 

expression is exp2; otherwise, exp3. 
 z = (a > b)? a : b; /* z = max (a, b)*/   

  If expr2 and expr3 are of different types, the type of 
the result is determined by the conversion rules 
discussed earlier. 

 int n; float f; 
 (n > 0) ? f : n   
 /* result of type float in either case */ 

36 



10 

Conditional Expressions: Advantage 

 Succinct but hard-to-read code 

  Example 1: 
for (i = 0; i < n; i++) 
 printf("%6d%c", a[i],  
  (i%10==9 || i==n-1) ? '\n' : ' '); 

  Example 2: 
printf("You have %d item%s.\n", n,  
 n==1 ? "" : "s"); 

37 

Next time ... 

 Control Flow (Chapter 3, C book) 
 Functions and program structures (Chapter 4, C 

book) 
 

38 


