
1

Introduction to C

CSE 2031
Fall 2012

1 September 10, 2012

C and Unix History

 Widely used, powerful, and fast.
 Both started at AT&T Bell Labs.
 UNIX was written in assembly, later changed to

C.
 Many variants of UNIX.

2

C vs. Java

 Java-like (actually Java has a C-like syntax),
some differences

 No //, only /* */ multi-line and no nesting
 No garbage collection
 No classes
 No exceptions (try … catch)
 No String type

3

First C Program

#include <stdio.h>
main() {
 printf(“hello, world \n”);
}

Note: #include <filename.h> replaces the

line by the actual file before compilation starts.

4

2

Special Characters

\n New line

\t Tab

\” Double quote

\\ The \ character

\0 The null character

\’ Single quote

5

Basic Input and Output

CSE 2031
Fall 2012

6 September 10, 2012

Basic I/O

 Every program has a standard input and output.
 Usually, keyboard and monitor, respectively.
 Can use > and < for redirection

 getchar()
 putchar()
 printf()
 scanf()

7

getchar() (7.1)

 To read one character at a time from the
standard input (the keyboard by default):

 int getchar(void)

 returns the next input char each time it is called;
 returns EOF when it encounters end of file.

 EOF input: Ctrl-D (Unix) or Ctrl-Z (Windows).
 EOF value defined in <stdio.h> is -1.

8

3

putchar(c) (7.1)

 Puts the character c on the standard output (the
screen by default).

 int putchar(int)
 returns the character written;
 returns EOF if an error occurs.

9

Example
#include <stdio.h>
#include <ctype.h>
main() /* Convert input to lower case */
{
 int c;
 c = getchar();
 while (c != EOF) {
 putchar(tolower(c));
 c = getchar();
 }
}

10

Example: more compact code

#include <stdio.h>
#include <ctype.h>

main() /* Convert input to lower case */
{
 int c;
 while ((c = getchar()) != EOF)
 putchar(tolower(c));
}

11

Behaviour of getchar()

 getchar() buffers input characters until a new line
or EOF is entered.
 That is, nothing happens until you hit Return or EOF.

 If the buffer is currently empty and EOF is
entered, the program terminates.

 If the buffer is not empty, it is processed, but
execution continues.

4

I/O Redirection

prog < infile
  prog reads characters

from infile instead of the
standard input.

otherprog | prog
  Output from otherprog is

the input to prog.

prog > outfile
  prog writes to outfile

instead of the standard
output.

prog | anotherprog
  puts the standard output

of prog into the standard
input of anotherprog.

13

printf() and scanf()

printf(“This is a test %d \n”, x)
scanf(“%x %d”, &x, &y)

%d %s %c %f %lf
 integer string character float double precision
%x
hexadecimal integer

printf() (7.2)

int printf(char *format, arg1, arg2, ...);

 Converts, formats, and prints its arguments on
the standard output under control of the format.

 Returns the number of characters printed
(usually we are not interested in the returned
value).

 Very similar to Java printf
15

printf Conversions (Pg. 154)

16

5

Output Formatting with printf()

  A minus sign, which specifies left adjustment of the converted
argument.

  A number that specifies the minimum field width. The converted
argument will be printed in a field at least this wide. If necessary it
will be padded on the left (or right, if left adjustment is called for) to
make up the field width.

  A period, which separates the field width from the precision.
  A number, the precision, that specifies the maximum number of

characters to be printed from a string, or the number of digits
after the decimal point of a floating-point value, or the minimum
number of digits for an integer.

17

scanf() (7.4)

  scanf() is the input analog of printf().

  To read an integer:
int num;
scanf("%d”, &num);
  &num is a pointer to num.

  To read a char and a float:
char c; float f;
scanf("%c %f”, &c, &f);

18

scanf Conversions (Pg. 158)

19

scanf()

int scanf(char *format, arg1, arg2, ...);

  reads characters from the standard input, interprets them according
to the specification in format, and stores the results through the
remaining arguments.

  stops when it exhausts its format string, or when some input fails to
match the control specification.

  returns the number of successfully matched and assigned input
items (e.g., to decide how many items were found).

  returns 0 if the next input character does not match the first
specification in the format string (i.e., an error).

  On the end of file, EOF is returned.
  Note: arg1, arg2, ... must be pointers!

20

6

More examples

 You will look at many more examples in
the lab

 A couple more now…

21

Next time ...

 Types, Operators and Expressions (Chapter 2)
 Testing and Debugging

22

