Introduction to C

CSE 2031
Fall 2012

September 10, 2012 1

C and Unix History

® Widely used, powerful, and fast.
® Both started at AT&T Bell Labs.

® UNIX was written in assembly, later changed to
C.
® Many variants of UNIX.

C vs. Java

® Java-like (actually Java has a C-like syntax),
some differences

® No //, only /* */ multi-line and no nesting
® No garbage collection

® No classes

® No exceptions (try ... catch)

® No String type

First C Program

#include <stdio.h>
main () {
printf (“hello, world \n”);

Note: #include <filename.h> replaces the
line by the actual file before compilation starts.

Special Characters

Basic Input and Output

CSE 2031
Fall 2012

September 10, 2012 6

\n New line

\t Tab

\” Double quote

\\ The \ character

\0 The null character
\ Single quote
Basic I/0O

® Every program has a standard input and output.
® Usually, keyboard and monitor, respectively.
® Can use > and < for redirection

® getchar()
® putchar()
® printf()
® scanf()

getchar() (7.1)

® To read one character at a time from the
standard input (the keyboard by default):

int getchar (void)
® returns the next input char each time it is called;

® returns EOF when it encounters end of file.
OEOF input: Ctrl-D (Unix) or Ctrl-Z (Windows).
OEOF value defined in <stdio.h> is -1.

putchar(c) (7.1)

® Puts the character ¢ on the standard output (the
screen by default).

int putchar (int)
® returns the character written;
® returns EOF if an error occurs.

Example

#include <stdio.h>
#include <ctype.h>
main() /* Convert input to lower case */
{
int c;
c = getchar() ;
while (¢ !'= EOF) {
putchar(tolower(c));
c = getchar() ;
}

}

Example: more compact code

#include <stdio.h>
#include <ctype.h>

main() /* Convert input to lower case */
{

int c;

while ((c = getchar()) !'= EOF)

putchar (tolower (c)) ;
}

Behaviour of getchar()

® getchar() buffers input characters until a new line
or EOF is entered.
OThat is, nothing happens until you hit Return or EOF.

® If the buffer is currently empty and EOF is
entered, the program terminates.

® If the buffer is not empty, it is processed, but
execution continues.

I/O Redirection

prog < infile

® prog reads characters
from infile instead of the
standard input.

otherprog | prog

® Output from otherprog is
the input to prog.

prog > outfile

® prog writes to outfile
instead of the standard
output.

prog | anotherprog

® puts the standard output
of prog into the standard
input of anotherprog.

printf() and scanf()

printf (“This is a test %d \n”, x)
scanf (“3x %d”, &x, &y)

%d %s %c %f %lf
integer string character float double precision
Yox

hexadecimal integer

printf() (7.2)

int printf(char *format, argl, arg2, ...);

® Converts, formats, and prints its arguments on
the standard output under control of the format.

® Returns the number of characters printed
(usually we are not interested in the returned

value).

® Very similar to Java printf

printf Conversions (Pg. 154)

Character Argument type; Printed As

d, i int; decimal number

o int: unsigned octal number (without a leading zero)

x, X int; unsigned hexadecimal number (without a leading 0x or 0X), using abcdef or

ABCDEF for 10,15.
u int; unsigned decimal number
c int; single character

char *; print characters from the string untila '\ 0" or the number of characters given
by the precision.
£ double; [-]m.dddddd, where the number of d's is given by the precision (default 6).

double; [-]m.dddddde +/-xx or [-]m.ddddddE +/ -xx, where the number of d's is
given by the precision (default 6).

double; use e or IE if the exponent is less than -4 or greater than or equal to the

g,G N

g precision; otherwise use $£. Trailing zeros and a trailing decimal point are not printed.
P void *; pointer (impl ion-depend: D1 ion).

% 00 argument is converted; print a %

Output Formatting with printf()

® A minus sign, which specifies left adjustment of the converted
argument.

® A number that specifies the minimum field width. The converted
argument will be printed in a field at least this wide. If necessary it
will be padded on the left (or right, if left adjustment is called for) to
make up the field width.

® A period, which separates the field width from the precision.

® A number, the precision, that specifies the maximum number of
characters to be printed from a string, or the number of digits
after the decimal point of a floating-point value, or the minimum
number of digits for an integer.

scanf() (7.4)

® scanf() is the input analog of printf().

® To read an integer:

int num;

scanf ("%d”, &num) ;

® &num is a pointer to num.

® To read a char and a float:
char c; float £;
scanf ("%c %f”, &c, &f);

scanf Conversions (Pg. 158)

[(‘haracter Input Data; Argument type

‘d decimal integer: int *

integer: int *. The integer may be in octal (leading 0) or hexadecimal (leading 0x or

0X).
‘o octal integer (with or without leading zero): int *
‘u unsigned decimal integer: unsigned int *
‘x hexadecimal integer (with or without leading 0x or 0X): int *

characters: char *. The next input characters (default 1) are placed at the indicated spot.
c The normal skip-over white space is suppressed: to read the next non-white space
character, use $1s

character string (not quoted): char *. pointing to an array of characters long enough for
the string and a terminating '\ 0" that will be added.

floating-point number with optional sign. optional decimal point and optional exponent:
float *

% literal %: no assignment is made.

scanf()

int scanf (char *format, argl, arg2, ...);

® reads characters from the standard input, interprets them according
to the specification in format, and stores the results through the
remaining arguments.

® stops when it exhausts its format string, or when some input fails to
match the control specification.

® returns the number of successfully matched and assigned input
items (e.g., to decide how many items were found).

® returns 0 if the next input character does not match the first
specification in the format string (i.e., an error).

® On the end of file, EOF is returned.

® Note: argl, arg2, ... mustbe pointers!

20

More examples

® You will look at many more examples in
the lab

® A couple more now...

Next time ...

® Types, Operators and Expressions (Chapter 2)
® Testing and Debugging

22

