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Solutions

1. (3 points) Draw a DFA that accepts the language consisting of all words over the alphabet Σ = {0, 1} of
even length. Add one or two sentences to your drawing to explain your design.

Solution:

As shown in the figure, the automaton has 2 states. The automaton is in the start state after seeing strings
of even length (including zero length) and is in the other state after seeing an input of odd length. Thus
the start state is the only accept state.

2. (3 points) Draw a NFA that accepts the language corresponding to the regular expression ((ab)∗ ∪ (bc)∗)ab.
You can do this by following the steps outlined in the book to convert regular expressions to finite automata.
If you do not follow these steps then add one or two sentences to explain why your automaton is correct.

Solution:

3. (3 points) Prove that for any 2 languages L1, L2, if L1 ⊆ L2 then L∗1 ⊆ L∗2.

Solution: Since L1 ⊆ L2 , every word w ∈ L1 also satisfied w ∈ L2. By definition a word v ∈ L∗1 is of the
form v = w1w2 . . . wk where k ≥ 0 and wi ∈ L1 for 0 ≤ i ≤ k. Since all these wi ∈ L2, by definition of the
Kleene-* operation, v ∈ L2. Therefore L∗1 ⊆ L∗2.

Note: This question is about languages in general. It is not meaningful to talk about automata for this
question. Further, the epsilon-closure of regular languages has no implications for this question.

Some students wanted to express L∗ in terms of concatenations of L. While that is a meaningful charac-
terization, it makes the Math harder. Observe that L∗ = ∪∞i Lk. In order to prove this question you need
to do an inductive proof that is far more complicated than my solution above.

4. (3 points) Suppose a language L ⊆ {a, b}∗ is defined recursively as follows.
ε ∈ L, and for every x ∈ L, both ax and axb are elements of L.
Prove using induction that every string in L is in L0 = {aibj |i ≥ j}.
Note: Actually L = L0 but you only have to prove that L ⊆ L0 in this question.

Solution: In any inductive proof, it is important to state the hypothesis precisely. We will carry out the
induction on the length |x| of strings x in the language L.

Base case: |x| = 0. The hypothesis holds since the only string of length zero is ε and we are given that it is
in L. It is also in L0 by the definition of L0 (at least as many a’s as b’s).
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Inductive Step: We assume that all string of length less than or equal to n in L is also in L0. Consider any
string s ∈ L such that |s| = n+ 1. The only ways s could have been produced is as s = ax for some x ∈ L
or s = ayb for some y ∈ L. By the inductive hypothesis, any such x, y are in L and hence have at least as
many a’s as b’s. Since ax increases the count of a’s by 1 and ayb increases the count of both a’s and b’s by
1, s still has at least as many a’s as b’s and is therefore in L0.

Therefore, by the principle of mathematical induction every string in L is also in L0, i.e., L ⊆ L0

5. (3 points) Consider the set of all even numbers. Assume that the numbers are represented in the normal
decimal format (i.e. base 10). Design an automaton to accept this language.

Note that the decimal format does not imply that there is a decimal point; we are dealing with integers.

Solution: In this question, the alphabet Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Let us first assume that the language
includes ε - the question does not explicitly specify if it does.

We can choose whether to feed the input in from left to right or right to left. Let us assume that we will
input the number starting with the most significant digit. In that case, the automaton should accept if and
only if the last digit input was even (i.e., 0,2,4,6 or 8).

As shown in the figure, the automaton has two states, one to remember that the last digit seen was odd
and the other to remember that the last digit shown was even.

You would get full credit for this. If you want to remove ε from the accepted language, you would add a
new start state with transitions to the accept state on even digit inputs and transitions to the non-accept
state on odd digit inputs.

6. (3 points) Suppose L is a regular language. Design a DFA or NFA (not GNFA) for the language

L′ = {wσ2|wσ ∈ L, σ ∈ Σ},

which is the language obtained from L by repeating the last letter of each word w in L with non-zero length,
i.e., |w| ≥ 1.

Solution:

We will modify the DFA M that accepts the regular language L. Consider each transition to an accepting
state t ∈ F from another state s ∈ Q. Let σ ∈ Σ be the label on this arrow. Then we replace this transition
with two transitions and a new state s′ as shown in the figure.

Note that this creates a NFA. This would get you full credit but it is still not complete. What if strings wσ
and wσα are accepted by the original automaton? The new automaton should accept wσαα and the above
contruction would not accept that string. So the above idea has to be carried out iteratively. Whenever you
add a new state s′ it shoul inherit the outgoing transitions of t in addition to the σ transition to t. Then
the procedure has to be repeated to check if the new transitions created are to accept states.
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7. (3 points) Consider a regular language L. Design a finite automaton that accepts the set of subsequences
of all words in L. The word w2 is a subsequence of a word w1 if w1 = σ1σ2 . . . σk for some σ1, σ2, . . . , σk ∈ Σ
and w2 = σ11σi2 . . . σil

where 1 ≤ i1 < i2 < . . . < il ≤ k.

Solution:

Since a subsequence is formed by leaving out zero or more characters from a string, we see that some or
all edges on an accepting path can be removed and the automaton should still reach an accept state. The
easiest way to achieve this is by adding an epsilon transition between every pair of nodes that are connected
by an edge in the given automaton.

Thus any substring of a string s would take the automaton through the same sequence of states as s, except
that it would use the epsilon transitions to handle the skipped characters.
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