CSE 2001: Introduction to Theory of Computation Fall 2012

Suprakash Datta

datta@cse.yorku.ca

Office: CSEB 3043 Phone: 416-736-2100 ext 77875

Course page: http://www.cs.yorku.ca/course/2001

11/29/2012

Halting problem - recap

 Assume that it is decidable. So there is a TM S that decides

HALT={<M,w>|M is a TM and M halts on w}

- Use S as a subroutine to get a TM S to decide
- $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \}$
- Therefore A_{TM} is decidable. CONTRADICTION!
- Details follow

Halting problem - 2

- S = "On input <M,w>
- Run TM R on input <M,w>.
- If R rejects, REJECT.
- If R accepts, simulate M on w until it halts.
- If M has accepted, ACCEPT, else REJECT"

More undecidability

 $E_{TM} = \{ <M > | M \text{ is a TM and } L(M) = \phi \}$ We mentioned that E_{TM} is co-TM recognizable. We will prove next that E_{TM} is undecidable.

Intuition: You cannot solve this problem UNLESS you solve the halting problem!!

But this is hard to formalize, so we use A_{TM} . Instead.

E_{TM} is undecidable

Assume R decides E_{TM} . Use R to design TM S to decide A_{TM} .

- Given a TM M and input w, define a new TM M':
 - If x≠w, reject
 - If x=w, accept iff M accepts w
- S = "On input <M,w>
- <u>Construct M' as above.</u>
- Run TM R on input <M'>.
- If R accepts, REJECT; If R rejects, ACCEPT."

$\mathbf{E}\mathbf{Q}_{\mathsf{T}\mathsf{M}}$ is undecidable

- If this is decidable, then we can solve E_{TM} !! (You need to check equality with TM M₁ that rejects all inputs)
- Assume R decides EQ_{TM} . Use R to design TM S to decide E_{TM} .
- S = "On input <M>
- Run TM R on input <M, M_1 >.
- If R accepts, ACCEPT; If R rejects, REJECT."

$\textbf{REGULAR}_{TM}$ is undecidable

• Theorem 5.3 in the text.

The running idea

All our proofs had a common structure

- The first undecidable proof was hard used diagonalization/self-reference.
- For the rest, we assumed decidable and used it as a subroutine to design TM's that decide known undecidable problems.
- Can we make this technique more structured?

Mapping Reducibility

Thus far, we used reductions informally: If <u>"knowing how to solve A" implied "knowing how</u> to solve B", then we had a **reduction** from B to A.

Sometimes we had to negate the answer to the " \in A?" question, sometimes not. In general, it was unspecified which transformations were allowed around the " \in A?"-part of the reduction.

Let us make this formal...

Computable Functions

A function $f: \Sigma^* \to \Sigma^*$ is a <u>TM-computable function</u> if there is a Turing machine that on every input $w \in \Sigma^*$ halts with just f(w) on the tape.

All the usual computations (addition, multiplication, sorting, minimization, etc.) are all TM-computable.

Note: alterations to TMs, like "given a TM M, we can make an M' such that..." can also be described by computable functions that satisfy $f(\langle M \rangle) = \langle M' \rangle$.

11/29/2012

Mapping Reducible

A language A is <u>mapping reducible</u> to a another language B if there is a TM-computable function $f:\Sigma^* \rightarrow \Sigma^*$ such that: $w \in A \iff f(w) \in B$ for every $w \in \Sigma^*$.

Terminology/notation:

- $A \leq_m B$
- function f is the reduction of A to B
- also called: *"many-one reducible"*

The language B can be more difficult than A.

Intuition suggests:

Theorem 5.22: If A \leq_m B and B is decidable, then A is decidable.

Corollary 5.23: If A \leq_m B and A is undecidable, then B is undecidable.

Previous mappings used

 $\textbf{A}_{TM} \leq_m \textbf{HALT}_{TM}$

- F = "On input <M,w>
- Construct TM M' = "on input x:
 - Run M on x
 - If M accepts, ACCEPT
 - If M rejects, enter infinite loop."
- Output <M',w>"

Check: f maps < M,w> to <M', w'>. <M,w> $\in A_{TM} \iff M',w> \in HALT_{TM}$

Previous mappings used - 2

<u>Recall</u>: M_1 rejects all inputs. Assume R decides EQ_{TM}. Use R to design TM S to decide E_{TM}.

- S = "On input <M>
- Run TM R on input <M, M_1 >.
- If R accepts, ACCEPT; If R rejects, REJECT."

Check: f maps < M> to <M, M_1 >. <M> $\in E_{TM} \iff M$, M_1 > $\in EQ_{TM}$

Decidability obeys \leq_m **Ordering**

- <u>Theorem 5.22</u>: If $A \leq_m B$ and B is TM-decidable, then A is TM-decidable.
- <u>Proof</u>: Let M be the TM that decides B and f the reducing function from A to B. Consider the TM: On input w:
- 1) Compute f(w)
- 2) Run M on f(w) and give the same output.

```
By definition of f: if w \in A then f(w) \in B.
M "accepts" f(w) if w \in A, and
M "rejects" f(w) if w \notin A.
```

Undecidability obeys \leq_m

<u>Corollary 5.23</u>: If $A \le_m B$ and A is undecidable, then B is undecidable as well. <u>Proof</u>: Language A undecidable and B decidable contradicts the previous theorem.

<u>Extra</u>: If $A \leq_m B$, then also for the complements $(\Sigma^* \setminus A) \leq_m (\Sigma^* \setminus B)$ <u>Proof</u>: Let f be the reducing function of A to B with $w \in A \iff f(w) \in B$. This same computable function also obeys " $v \in (\Sigma^* \setminus A) \iff f(v) \in (\Sigma^* \setminus B)$ " for all $v \in \Sigma^*$

Recognizability and \leq_m

- <u>Theorem 5.28</u>: If $A \le_m B$ and B is TM-recognizable, then A is TM-recognizable.
- <u>Proof</u>: Let M be the TM that recognizes B and f the reducing function from A to B. Again the TM: On input w:
- 1) Compute f(w)
- 2) Simulate M on f(w) and give the same result.

By definition of f: $w \in A$ equivalent with $f(w) \in B$. M "accepts" f(w) if $w \in A$, and M "rejects" f(w)/does not halt on f(w) if $w \notin A$.

Unrecognizability and \leq_m

<u>Corollary 5.29</u>: If $A \le_m B$ and A is not Turingrecognizable, then B is not recognizable as well. <u>Proof</u>: Language A not TM-recognizable and B recognizable contradicts the previous theorem.

<u>Extra</u>: If $A \leq_m B$ and A is not co-TM recognizable, then B is not co-Turing-recognizable as well. <u>Proof</u>: If A is not co-TM-recognizable, then the complement ($\Sigma^* \setminus A$) is not TM recognizable. By $A \leq_m B$ we also know that ($\Sigma^* \setminus A$) $\leq_m (\Sigma^* \setminus B)$. Previous corollary: ($\Sigma^* \setminus B$) not TM recognizable, hence B not co-Turing-recognizable.

$\mathbf{E}_{\mathsf{TM}} \ \textbf{Revisited}$

<u>Recall</u>: The emptiness language was defined as $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM with } L(M) = \emptyset \}$ E_{TM} is not Turing recognizable.

<u>Simple proof</u> via $(\bar{A}_{TM} \leq_m E_{TM})$: Let f on input <M,w> give <M'> as output with: M': Ignore input Run M on w If M accepted w then "accept" otherwise "reject"

Now: $\langle M, w \rangle \in \bar{A}_{TM} \iff f(\langle M, w \rangle) = \langle M' \rangle \in E_{TM}$

11/29/2012

Something still unproven...

EQ_{TM} is not TM Recognizable

<u>Proof</u> (by showing $\bar{A}_{TM} \leq_m EQ_{TM}$):

Let f on input <M,w> give <M $_1$,M $_2$ > as output with: M $_1$: "reject" on all inputs M $_2$: Ignore input Run M on w "accept" if M accepted w

We see that with this TM-computable f: $\langle M,w \rangle \in \bar{A}_{TM} \iff f(\langle M,w \rangle) = \langle M_1,M_2 \rangle \in EQ_{TM}$

Because \bar{A}_{TM} is not recognizable, so is EQ_{TM}.

EQ_{TM} not co-TM Recognizable

<u>Proof</u> (by showing $A_{TM} \leq_m EQ_{TM}$):

Let f on input <M,w> give <M $_1$,M $_2$ > as output with: M $_1$: "accept" on all inputs M $_2$: Ignore input Run M on w "accept" if M accepted w

We see that with this TM-computable f: $\langle M,w \rangle \in A_{TM} \iff f(\langle M,w \rangle) = \langle M_1,M_2 \rangle \in EQ_{TM}$

Because A_{TM} is not co-recognizable, so is EQ_{TM}.

Partial \leq_{m} **Ordering**

