
11/29/2012 CSE 2001, Fall 2012 1

CSE 2001:
Introduction to Theory of Computation

Fall 2012

Suprakash Datta
datta@cse.yorku.ca

Office: CSEB 3043
Phone: 416-736-2100 ext 77875

Course page: http://www.cs.yorku.ca/course/2001

11/29/2012 CSE 2001, Fall 2012 2

Halting problem - recap
• Assume that it is decidable. So there is a

TM S that decides
HALT={<M,w>|M is a TM and M halts on w}
• Use S as a subroutine to get a TM S to

decide
ATM = {M,w | M is a TM that accepts w }
• Therefore ATM is decidable. CONTRADICTION!
• Details follow ….

11/29/2012 CSE 2001, Fall 2012 3

Halting problem - 2
S = “On input <M,w>
• Run TM R on input <M,w>.
• If R rejects, REJECT.
• If R accepts, simulate M on w until it halts.
• If M has accepted, ACCEPT, else REJECT”

11/29/2012 CSE 2001, Fall 2012 4

More undecidability
ETM = {<M>| M is a TM and L(M) = }
We mentioned that ETM is co-TM recognizable.
We will prove next that ETM is undecidable.

Intuition: You cannot solve this problem UNLESS
you solve the halting problem!!

But this is hard to formalize, so we use ATM.
Instead.

11/29/2012 CSE 2001, Fall 2012 5

ETM is undecidable
Assume R decides ETM. Use R to design TM S to decide ATM.

• Given a TM M and input w, define a new TM M’:
– If xw, reject
– If x=w, accept iff M accepts w

S = “On input <M,w>
• Construct M’ as above.
• Run TM R on input <M’>.
• If R accepts, REJECT; If R rejects, ACCEPT.”

11/29/2012 CSE 2001, Fall 2012 6

EQTM is undecidable
If this is decidable, then we can solve ETM!! (You

need to check equality with TM M1 that rejects all
inputs)

Assume R decides EQTM. Use R to design TM S to
decide ETM.

S = “On input <M>
• Run TM R on input <M, M1>.
• If R accepts, ACCEPT; If R rejects, REJECT.”

11/29/2012 CSE 2001, Fall 2012 7

REGULARTM is undecidable
• Theorem 5.3 in the text.

11/29/2012 CSE 2001, Fall 2012 8

The running idea

All our proofs had a common structure
• The first undecidable proof was hard –

used diagonalization/self-reference.
• For the rest, we assumed decidable and

used it as a subroutine to design TM’s
that decide known undecidable problems.

• Can we make this technique more
structured?

11/29/2012 CSE 2001, Fall 2012 9

Mapping Reducibility
Thus far, we used reductions informally:
If “knowing how to solve A” implied “knowing how
to solve B”, then we had a reduction from B to A.

Sometimes we had to negate the answer to the
“A?” question, sometimes not. In general, it
was unspecified which transformations were
allowed around the “A?”-part of the reduction.

Let us make this formal…

11/29/2012 CSE 2001, Fall 2012 10

Computable Functions

A function f:** is a TM-computable function
if there is a Turing machine that on every input
w* halts with just f(w) on the tape.

All the usual computations (addition, multiplication,
sorting, minimization, etc.) are all TM-computable.

Note: alterations to TMs, like “given a TM M, we
can make an M’ such that…” can also be described
by computable functions that satisfy f(M) = M’.

11/29/2012 CSE 2001, Fall 2012 11

Mapping Reducible
A language A is mapping reducible to a another
language B if there is a TM-computable function
f:** such that: wA  f(w)B
for every w*.

A B
f

fTerminology/notation:
• A m B
• function f is the
reduction of A to B

• also called:
“many-one reducible”

11/29/2012 CSE 2001, Fall 2012 12

A m B
The language B can be more difficult than A.

Intuition suggests:

Theorem 5.22: If A m B and B is decidable,
then A is decidable.

Corollary 5.23: If A m B and A is undecidable,
then B is undecidable.

11/29/2012 CSE 2001, Fall 2012 13

Previous mappings used
ATM m HALTTM

F = “On input <M,w>
• Construct TM M’ = “on input x:

– Run M on x
– If M accepts, ACCEPT
– If M rejects, enter infinite loop.”

• Output <M’,w>”

Check: f maps < M,w> to <M’, w’>.
<M,w> ATM <M’,w> HALTTM

11/29/2012 CSE 2001, Fall 2012 14

Previous mappings used - 2
Recall: M1 rejects all inputs. Assume R decides

EQTM. Use R to design TM S to decide ETM.

S = “On input <M>
• Run TM R on input <M, M1>.
• If R accepts, ACCEPT; If R rejects, REJECT.”

Check: f maps < M> to <M, M1>.
<M> ETM <M , M1> EQTM

11/29/2012 CSE 2001, Fall 2012 15

Decidability obeys m Ordering
Theorem 5.22: If AmB and B is TM-decidable,
then A is TM-decidable.
Proof: Let M be the TM that decides B and f the
reducing function from A to B. Consider the TM:
On input w:
1) Compute f(w)
2) Run M on f(w) and give the same output.

By definition of f: if wA then f(w)B.
M “accepts” f(w) if wA, and
M “rejects” f(w) if wA.

11/29/2012 CSE 2001, Fall 2012 16

Undecidability obeys m
Corollary 5.23: If AmB and A is undecidable,
then B is undecidable as well.
Proof: Language A undecidable and B decidable
contradicts the previous theorem.

Extra: If AmB, then also for the complements
(*\A) m (*\B)
Proof: Let f be the reducing function of A to B
with wA  f(w)B. This same computable
function also obeys “v(*\A)  f(v)(*\B)”
for all v*

11/29/2012 CSE 2001, Fall 2012 17

Recognizability and m

Theorem 5.28: If AmB and B is TM-recognizable,
then A is TM-recognizable.
Proof: Let M be the TM that recognizes B and f
the reducing function from A to B. Again the TM:
On input w:
1) Compute f(w)
2) Simulate M on f(w) and give the same result.

By definition of f: wA equivalent with f(w)B.
M “accepts” f(w) if wA, and
M “rejects” f(w)/does not halt on f(w) if wA.

11/29/2012 CSE 2001, Fall 2012 18

Unrecognizability and m

Corollary 5.29: If AmB and A is not Turing-
recognizable, then B is not recognizable as well.
Proof: Language A not TM-recognizable and B
recognizable contradicts the previous theorem.

Extra: If AmB and A is not co-TM recognizable,
then B is not co-Turing-recognizable as well.
Proof: If A is not co-TM-recognizable, then the
complement (*\A) is not TM recognizable.
By AmB we also know that (*\A) m (*\B).
Previous corollary: (*\B) not TM recognizable, hence
B not co-Turing-recognizable .

11/29/2012 CSE 2001, Fall 2012 19

ETM Revisited
Recall: The emptiness language was defined as
ETM = { M | M is a TM with L(M)= }
ETM is not Turing recognizable.

Simple proof via (ĀTM m ETM):
Let f on input M,w give M’ as output with:
M’: Ignore input

Run M on w
If M accepted w then “accept”
otherwise “reject”

Now: M,wĀTM  f(M,w) = M’ETM

11/29/2012 CSE 2001, Fall 2012 20

Something still unproven…

co-TM recognizable

TM-recognizable

TM decidable

ETM = { M | M is a TM with L(M)= }

EQTM = { G,H | G,H TMs with L(G)=L(H) }

ATM = { M,w | M is a TM that accepts w }

11/29/2012 CSE 2001, Fall 2012 21

EQTM is not TM Recognizable
Proof (by showing ĀTM m EQTM):

Let f on input M,w give M1,M2 as output with:
M1: “reject” on all inputs
M2: Ignore input

Run M on w
“accept” if M accepted w

We see that with this TM-computable f:
M,wĀTM  f(M,w) = M1,M2  EQTM

Because ĀTM is not recognizable, so is EQTM.

11/29/2012 CSE 2001, Fall 2012 22

EQTM not co-TM Recognizable
Proof (by showing ATM m EQTM):

Let f on input M,w give M1,M2 as output with:
M1: “accept” on all inputs
M2: Ignore input

Run M on w
“accept” if M accepted w

We see that with this TM-computable f:
M,wATM  f(M,w) = M1,M2  EQTM

Because ATM is not co-recognizable, so is EQTM.

11/29/2012 CSE 2001, Fall 2012 23

Partial m Ordering

m

ATM

ĀTM

EQTM

m

?

m

m

m

T
R
I
V
I
A
L

D
E
C
I
D
A
B
L
E

