CSE 2001:

Introduction to Theory of Computation
Fall 2012

Suprakash Datta

datta@cse.yorku.ca

Office: CSEB 3043
Phone: 416-736-2100 ext 77875

Course page: http://www.cs.yorku.ca/course/2001

11/29/2012 CSE 2001, Fall 2012 1

Halting problem - recap

« Assume that it is decidable. So there is a
TM S that decides

HALT={<M,w>|M is a TM and M halts on w}

 Use S as a subroutinetogeta TM S to
decide

Ay = {<M,w> | M is a TM that accepts w }
* Therefore A, is decidable. CONTRADICTION!
* Details follow

11/29/2012 CSE 2001, Fall 2012 2

Halting problem - 2

S = "0On input <M,w>

* Run TM R on input <M,w>.

* If R rejects, REJECT.

 If R accepts, simulate M on w until it halts.

* If M has accepted, ACCEPT, else REJECT”

11/29/2012 CSE 2001, Fall 2012 3

More undecidability
Erv={<M>| Misa TM and L(M) = ¢}
We mentioned that E, is co-TM recognizable.
We will prove next that E,, is undecidable.

Intuition: You cannot solve this problem UNLESS
you solve the halting problem!!

But this is hard to formalize, so we use Aq,.
Instead.

11/29/2012 CSE 2001, Fall 2012

E. IS undecidable

Assume R decides E,. Use R to design TM S to decide A;,,.

 Givena TM M and input w, define a new TM M-
— If x#w, reject
— If x=w, accept iff M accepts w

S ="“On input <M,w>

* Construct M" as above.

« Run TM R on input <M’>.

 If R accepts, REJECT,; If R rejects, ACCEPT.”

11/29/2012 CSE 2001, Fall 2012 5

EQ;y is undecidable

If this is decidable, then we can solve E4,!! (You
need to check equality with TM M, that rejects all
inputs)

Assume R decides EQ;y. Use R to design TM S to
decide E,.

S =“On input <M>

* Run TM R on input <M, M,>.
* If R accepts, ACCEPT; If R rejects, REJECT.”

11/29/2012 CSE 2001, Fall 2012 6

REGULAR;, is undecidable

e Theorem 5.3 In the text.

11/29/2012 CSE 2001, Fall 2012

The running idea

All our proofs had a common structure

* The first undecidable proof was hard —
used diagonalization/self-reference.

* For the rest, we assumed decidable and
used it as a subroutine to design TM's
that decide known undecidable problems.

« Can we make this technique more
structured?

11/29/2012 CSE 2001, Fall 2012 8

Mapping Reducibility

Thus far, we used reductions informally:

If “’knowing how to solve A” implied "knowing how
to solve B”, then we had a reduction from B to A.

Sometimes we had to negate the answer to the
“e A"?" question, sometimes not. In general, it
was unspecified which transformations were
allowed around the “eA?"-part of the reduction.

Let us make this formal...

11/29/2012 CSE 2001, Fall 2012 9

Computable Functions

A function f:X*—>Xx* is a TM-computable function
if there is a Turing machine that on every input
weX* halts with just f(w) on the tape.

All the usual computations (addition, multiplication,
sorting, minimization, etc.) are all TM-computable.

Note: alterations to TMSs, like “givena TM M, we
can make an M’ such that...” can also be described
by computable functions that satisfy f(<M>) = <M’>.

11/29/2012 CSE 2001, Fall 2012 10

Mapping Reducible

A language A is mapping reducible to a another
language B if there is a TM-computable function

f:2*—>¥* such that: _

for every weX*.

Terminology/notation:

f
‘A< B
* function f is the
reduction of A to B f
«

» also called:
“many-one reducible”

11/29/2012 CSE 2001, Fall 2012 11

A< B

The language B can be more difficult than A.
Intuition suggests:

Theorem 5.22: If A <, B and B is decidable,
then A is decidable.

Corollary 5.23: If A <, B and A is undecidable,
then B is undecidable.

11/29/2012 CSE 2001, Fall 2012 12

Previous mappings used
Ay < HALT

F =“On input <M,w>
e Construct TM M’ = “on input x:

— Run M on x
— If M accepts, ACCEPT
— If M rejects, enter infinite loop.”

* Output <M’,w>"

Check: f maps < M,w> to <M’, w’>.
<M,w>e A, &= <M’ ,w>e HALT,,

11/29/2012 CSE 2001, Fall 2012

13

Previous mappings used - 2

Recall: M, rejects all inputs. Assume R decides
EQ.,. Use R to design TM S to decide E-,,.

S =“On input <M>
* Run TM R on input <M, M>.
* If R accepts, ACCEPT,; If R rejects, REJECT.”

Check: f maps < M> to <M, M>.
<M>e E;, <= <M, M,>e EQq,

11/29/2012 CSE 2001, Fall 2012 14

Decidability obeys < _ Ordering

Theorem 5.22: If A< B and B is TM-decidable,
then A is TM-decidable.

Proof: Let M be the TM that decides B and f the
reducing function from A to B. Consider the TM:
On input w:

1) Compute f(w)

2) Run M on f(w) and give the same output.

By definition of f: if weA then f(w)eB.
M “accepts” f(w) if weA, and
M “rejects” f(w) if wgA.

11/29/2012 CSE 2001, Fall 2012 15

Undecidability obeys < _

Corollary 5.23: If A< B and A is undecidable,
then B is undecidable as well.

Proof: Language A undecidable and B decidable
contradicts the previous theorem.

Extra: If A< B, then also for the complements
(XM\A) <, (Z*\B)

Proof: Let f be the reducing function of A to B
with weA <= f(w)eB. This same computable
function also obeys “ve(Z"\A) <= f(v)e(Z*\B)”
for all veX*

11/29/2012 CSE 2001, Fall 2012 16

Recognizability and <

Theorem 5.28: If A< B and B is TM-recognizable,
then A is TM-recognizable.

Proof: Let M be the TM that recognizes B and f
the reducing function from A to B. Again the TM:
On input w:

1) Compute f(w)

2) Simulate M on f(w) and give the same result.

By definition of f: weA equivalent with f(w)eB.
M “accepts” f(w) if weA, and
M “rejects” f(w)/does not halt on f(w) if wgA.

11/29/2012 CSE 2001, Fall 2012 17

Unrecognizability and <

Corollary 5.29: If A<_B and A is not Turing-
recognizable, then B is not recognizable as well.

Proof: Language A not TM-recognizable and B
recognizable contradicts the previous theorem.

Extra: If A<, B and A is not co-TM recognizable,
then B is not co-Turing-recognizable as well.

Proof: If A is not co-TM-recognizable, then the
complement (2.*\A) is not TM recognizable.

By A<_B we also know that (2*\A) < (2*\B).

Previous corollary: (2.*\B) not TM recognizable, hence
B not co-Turing-recognizable .

11/29/2012 CSE 2001, Fall 2012 18

E., Revisited

Recall: The emptiness language was defined as
Ery={<M>|Mis a TM with L(M)=C }
E\ IS not Turing recognizable.

Simple proof via (Ary <., E1y):

Let f on input <M,w> give <M’> as output with:
M’: Ignore input

Run M on w

f M accepted w then “accept”

otherwise “reject”

Now: <M,w>eAq, <= f(<M,w>) = <M’>eEqy,
11/29/2012 CSE 2001, Fall 2012 19

Something still unproven...

EQTM

11/29/2012

{<G,H>| G,H TMs with L(G)=

CSE 2001, Fall 2012

r p
TM-recognizable
(-
TM decidable
\ y,
co-TM recognizable

"-__AT,\,I <M,w> | M is a TM that accepts w }

"ETM { <M> | M is a TM with L(M)=2 }

L(H)

20

EQ-., is not TM Recognizable

Proof (by showing Ay <., EQqy):
Let f on input <M,w> give <M,,M,> as output with:
M,: “reject” on all inputs
M,: Ignore input
Run M on w
“accept” if M accepted w

We see that with this TM-computable f:
<M,w>eA, <= f(<M,w>) = <M,,M,> € EQqy,

Because Aqy, is not recognizable, so is EQqy.

11/29/2012 CSE 2001, Fall 2012 21

EQ;, not co-TM Recognizable

Proof (by showing Ay <, EQp):
Let f on input <M,w> give <M,,M,> as output with:
M,: "accept” on all inputs
M,: Ignore input
Run M on w
“accept” if M accepted w

We see that with this TM-computable f:
<M,w>eAq == f(<M,w>) = <M,M,> € EQq,

Because Ay, is not co-recognizable, so is EQqy.

11/29/2012 CSE 2001, Fall 2012 22

rr»—-<<—-—2X0 -

11/29/2012

Partial < Ordering

CSE 2001, Fall 2012

23

