
11/27/2012 CSE 2001, Fall 2012 1

CSE 2001:
Introduction to Theory of Computation

Fall 2012

Suprakash Datta
datta@cse.yorku.ca

Office: CSEB 3043
Phone: 416-736-2100 ext 77875

Course page: http://www.cs.yorku.ca/course/2001

11/27/2012 CSE 2001, Fall 2012 2

Next: Ch 4.2
Towards undecidability:

• The Halting Problem

• Diagonalization arguments

11/27/2012 CSE 2001, Fall 2012 3

The Halting Problem
The existence of the universal TM U shows that
ATM = {M,w | M is a TM that accepts w }

is TM-recognizable, but can we also decide it?

The problem lies with the cases when M does
not halt on w. In short: the halting problem.

We will see that this is an insurmountable
problem: in general one cannot decide if a TM
will halt on w or not, hence ATM is undecidable.

11/27/2012 CSE 2001, Fall 2012 4

Counting arguments
• We need tools to reason about

undecidability.
• The basic argument is that there are

more languages than Turing machines
and so there are languages than Turing
machines. Thus some languages
cannot be decidable.

11/27/2012 CSE 2001, Fall 2012 5

Countable sets in language theory
• * is countable – finitely many strings of

length k. Order them lexicographically.
• Set of all Turing machines countable – every

TM can be encoded as a string over some .

11/27/2012 CSE 2001, Fall 2012 6

Uncountable Sets

There are infinite sets that are not countable.
Typical examples are R, P (N) and P ({0,1}*)

We prove this by a diagonalization argument.
In short, if S is countable, then you can make a
list s1,s2,… of all elements of S.

Diagonalization shows that given such a list,
there will always be an element x of S that
does not occur in s1,s2,…

11/27/2012 CSE 2001, Fall 2012 7

Uncountability of P (N)
The set P (N) contains all the subsets of {1,2,…}.
Each subset X N can be identified by an infinite
string of bits x1x2... such that xj=1 iff jX.

There is a bijection between P (N) and {0,1}N.

Proof by contradiction: Assume P (N) countable.
Hence there must exist a surjection F from N to
the set of infinite bit strings.
“There is a list of all infinite bit strings.”

11/27/2012 CSE 2001, Fall 2012 8

Diagonalization

Try to list all possible infinite bit strings:











010103
000012
111111
000000

Look at the bit string on the diagonal of
this table: 0101… The negation of this
string (“1010…”) does not appear in the table.

11/27/2012 CSE 2001, Fall 2012 9

No Surjection N  {0,1}N

Let F be a function N  {0,1}N.
F(1),F(2),… are all infinite bit strings.

Define the infinite string Y=Y1Y2… by
Yj = NOT(j-th bit of F(j))

On the one hand Y {0,1}N, but on the other
hand: for every j N we know that F(j)  Y
because F(j) and Y differ in the j-th bit.

F cannot be a surjection: {0,1}N is uncountable.

11/27/2012 CSE 2001, Fall 2012 10

Generalization
• We proved that P ({0,1}*) is uncountably

infinite.
• Can be generalized to P (*) for any finite .

• Can be used to show that the set of
reals is uncountable (last class).

11/27/2012 CSE 2001, Fall 2012 11

Uncountability

We just showed that there it is impossible to
have a surjection from N to the set {0,1}N.

What does this have to do with Turing
machine computability?

11/27/2012 CSE 2001, Fall 2012 12

Counting TMs

Observation: Every TM has a finite description;
there is only a countable number of different TMs.
(A description M can consist of a finite string
of bits, and the set {0,1}* is countable.)

Our definition of Turing recognizable languages
is a mapping between the set of TMs {M1,M2 ,…}
and the set of languages {L(M1),L(M2),…}P (*).

Question: How many languages are there?

11/27/2012 CSE 2001, Fall 2012 13

Counting Languages

There are uncountably many different languages
over the alphabet ={0,1} (the languages L{0,1}*).
With the lexicographical ordering ,0,1,00,01,… of *,
every L coincides with an infinite bit string via its
characteristic sequence L.

Example for L={0,00,01,000,001,…} with L= 0101100…







1110011010
XXXXXXL

0100010001110010010*

L



11/27/2012 CSE 2001, Fall 2012 14

Counting TMs and Languages
There is a bijection between the set of languages
over the alphabet ={0,1} and the uncountable
set of infinite bit strings {0,1}N.
 There are uncountable many different

languages L{0,1}*.
 Hence there is no surjection possible from the

countable set of TMs to the set of languages.
Specifically, the mapping L(M) is not surjective.

Conclusion: There are languages that are not
Turing-recognizable. (A lot of them.)

11/27/2012 CSE 2001, Fall 2012 15

Is This Really Interesting?

We now know that there are languages that are
not Turing recognizable, but we do not know
what kind of languages are non-TM-
recognizable.

Are there interesting languages for which we
can prove that there is no Turing machine that
recognizes it?

11/27/2012 CSE 2001, Fall 2012 16

Proving Undecidability (1)
Recall the language
ATM = { M,w | M is a TM that accepts w }.

Proof that ATM is not TM-decidable (Thm. 4.11)
(Contradiction) Assume that TM G decides ATM:






waccept not does M if reject""

w accepts M if accept""
w,MG

From G we construct a new TM D that will get
us into trouble…

11/27/2012 CSE 2001, Fall 2012 17

Proving Undecidability (2)
The TM D works as follows on input M (a TM):
1) Run G on M,M
2) Disagree with the answer of G
(The TM D always halts because G always halts.)








MM, accepts G if reject""

MM, rejects G if accept""
MDIn short:








Maccept does M if reject""

Maccept not does M if accept""
MDHence:

Now run D on D (“on itself”)…

11/27/2012 CSE 2001, Fall 2012 18

Proving Undecidability (3)








Daccept does D if reject""

Daccept not does D if accept""
DDResult:

This does not make sense: D only accepts
if it rejects, and vice versa.
(Note again that D always halts.)

Contradiction: ATM is not TM-decidable.

This proof used diagonalization implicitly…

11/27/2012 CSE 2001, Fall 2012 19

Review of Proof (1)







acceptacceptM
M

acceptacceptacceptacceptM
acceptacceptM

MMMM

4

3

2

1

4321

‘Acceptance behavior’ of Mi on Mj

11/27/2012 CSE 2001, Fall 2012 20

Review of Proof (2)







rejectrejectacceptacceptM
rejectrejectrejectrejectM
acceptacceptacceptacceptM
rejectacceptrejectacceptM

MMMM

4

3

2

1

4321

‘Deciding behavior’ of G on Mi,Mj

11/27/2012 CSE 2001, Fall 2012 21

Review of Proof (3)











acceptacceptrejectrejectD

rejectrejectacceptacceptM
rejectrejectrejectrejectM
acceptacceptacceptacceptM
rejectacceptrejectacceptM

DMMMM

4

3

2

1

4321

Disagreeing D has to occur in list as well…

11/27/2012 CSE 2001, Fall 2012 22

Review of Proof (4)











?acceptacceptrejectrejectD

rejectrejectacceptacceptM
rejectrejectrejectrejectM
acceptacceptacceptacceptM
rejectacceptrejectacceptM

DMMMM

4

3

2

1

4321

Contradiction for D on input D.

11/27/2012 CSE 2001, Fall 2012 23

TM-Unrecognizable

ATM is not TM-decidable, but it is TM-recognizable.
What about a language that is not recognizable?

Theorem 4.22: If a language A is recognizable
and its complement Ā is recognizable, then A
is Turing machine decidable.

Proof: Run the recognizing TMs for A and Ā in
parallel on input x. Wait for one of the TMs to
accept. If the TM for A accepted: “accept x”;
if the TM for Ā accepted: “reject x”.

11/27/2012 CSE 2001, Fall 2012 24

ĀTM is not TM-Recognizable
By the previous theorem it follows that ĀTM cannot
be TM-recognizable, because this would imply
that ATM is TM decidable (Corollary 4.23).

co-TM recognizable

We call languages like ĀTM co-TM recognizable.

TM-recognizable

TM decidable

11/27/2012 CSE 2001, Fall 2012 25

Things that TMs Cannot Do:

EQTM = { G,H | G and H are TMs
with L(G)=L(H) }

ETM = { G | G is a TM with L(G)= }

The following languages are also unrecognizable:

To be precise:
• ETM is co-TM recognizable
• EQTM is not even co-Turing recognizable

How can we prove these facts?

11/27/2012 CSE 2001, Fall 2012 26

Next: reducibility
• We still need to prove that the Halting

problem is undecidable.
• Do more examples of undecidable

problems.
• Try to get a general technique for

proving undecidability.

11/27/2012 CSE 2001, Fall 2012 27

Halting problem
• Assume that it is decidable. So there is a

TM S that decides
HALT={<M,w>|M is a TM and M halts on w}
• Use S as a subroutine to get a TM S to

decide
ATM = {M,w | M is a TM that accepts w }
• Therefore ATM is decidable. CONTRADICTION!
• Details follow ….

11/27/2012 CSE 2001, Fall 2012 28

Halting problem - 2
S = “On input <M,w>
• Run TM R on input <M,w>.
• If R rejects, REJECT.
• If R accepts, simulate M on w until it halts.
• If M has accepted, ACCEPT, else REJECT”

11/27/2012 CSE 2001, Fall 2012 29

More undecidability
ETM = {<M>| M is a TM and L(M) = }
We mentioned that ETM is co-TM recognizable.
We will prove next that ETM is undecidable.

Intuition: You cannot solve this problem UNLESS
you solve the halting problem!!

But this is hard to formalize, so we use ATM.
Instead.

11/27/2012 CSE 2001, Fall 2012 30

ETM is undecidable
Assume R decides ETM. Use R to design TM S to decide ATM.

• Given a TM M and input w, define a new TM M’:
– If xw, reject
– If x=w, accept iff M accepts w

S = “On input <M,w>
• Construct M’ as above.
• Run TM R on input <M’>.
• If R accepts, REJECT; If R rejects, ACCEPT.”

