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Next: Ch 4.2
Towards undecidability: 

• The Halting Problem

• Diagonalization arguments
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The Halting Problem
The existence of the universal TM U shows that 
ATM = {M,w | M is a TM that accepts w }

is TM-recognizable, but can we also decide it?

The problem lies with the cases when M does 
not halt on w.  In short: the halting problem.

We will see that this is an insurmountable 
problem: in general one cannot decide if a TM
will halt on w or not, hence ATM is undecidable.
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Counting arguments
• We need tools to reason about 

undecidability.
• The basic argument is that there are 

more languages than Turing machines 
and so there are languages than Turing 
machines. Thus some languages 
cannot be decidable.
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Countable sets in language theory
• * is countable – finitely many strings of 

length k. Order them lexicographically.
• Set of all Turing machines countable – every 

TM can be encoded as a string over some .
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Uncountable Sets

There are infinite sets that are not countable.
Typical examples are R, P (N) and P ({0,1}*) 

We prove this by a diagonalization argument.
In short, if S is countable, then you can make a
list s1,s2,… of all elements of S.

Diagonalization shows that given such a list,
there will always be an element x of S that
does not occur in s1,s2,…
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Uncountability of P (N)
The set P (N) contains all the subsets of  {1,2,…}.
Each subset X N can be identified by an infinite
string of bits x1x2... such that xj=1 iff jX.

There is a bijection between P (N) and {0,1}N.

Proof by contradiction: Assume P (N) countable.  
Hence there must exist a surjection F from N to 
the set of infinite bit strings. 
“There is a list of all infinite bit strings.”
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Diagonalization

Try to list all possible infinite bit strings:











010103
000012
111111
000000

Look at the bit string on the diagonal of
this table: 0101… The negation of this
string (“1010…”) does not appear in the table.



11/27/2012 CSE 2001, Fall 2012 9

No Surjection N  {0,1}N

Let F be a function N  {0,1}N.
F(1),F(2),… are all infinite bit strings.

Define the infinite string Y=Y1Y2… by
Yj = NOT(j-th bit of F(j))

On the one hand Y {0,1}N, but on the other 
hand: for every j N we know that F(j)  Y 
because F(j) and Y differ in the j-th bit.

F cannot be a surjection: {0,1}N is uncountable.
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Generalization
• We proved that P ({0,1}*) is uncountably 

infinite.
• Can be generalized to P (*) for any finite .

• Can be used to show that the set of 
reals is uncountable (last class).
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Uncountability

We just showed that there it is impossible to
have a surjection from N to the set {0,1}N.

What does this have to do with Turing 
machine computability?
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Counting TMs

Observation: Every TM has a finite description;
there is only a countable number of different TMs.
(A description M can consist of a finite string
of bits, and the set {0,1}* is countable.)

Our definition of Turing recognizable languages
is a mapping between the set of TMs {M1,M2 ,…} 
and the set of languages {L(M1),L(M2),…}P (*).

Question: How many languages are there?
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Counting Languages

There are uncountably many different languages 
over the alphabet ={0,1}    (the languages L{0,1}*).
With the lexicographical ordering ,0,1,00,01,… of *, 
every L coincides with an infinite bit string via its 
characteristic sequence L.

Example for L={0,00,01,000,001,…} with L= 0101100…







1110011010
XXXXXXL

0100010001110010010*

L


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Counting TMs and Languages
There is a bijection between the set of languages
over the alphabet ={0,1} and the uncountable
set of infinite bit strings {0,1}N.
 There are uncountable many different

languages L{0,1}*.
 Hence there is no surjection possible from the

countable set of TMs to the set of languages.
Specifically, the mapping L(M) is not surjective.

Conclusion: There are languages that are not
Turing-recognizable. (A lot of them.)
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Is This Really Interesting?

We now know that there are languages that are 
not Turing recognizable, but we do not know 
what kind of languages are non-TM-
recognizable.

Are there interesting languages for which we 
can prove that there is no Turing machine that 
recognizes it?
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Proving Undecidability (1)
Recall the language
ATM = { M,w | M is a TM that accepts w }.

Proof that ATM is not TM-decidable (Thm. 4.11)
(Contradiction) Assume that TM G decides ATM:






waccept not  does M if reject""

w accepts M if accept""
w,MG

From G we construct a new TM D that will get
us into trouble…



11/27/2012 CSE 2001, Fall 2012 17

Proving Undecidability (2)
The TM D works as follows on input  M (a TM):
1) Run G on M,M
2) Disagree with the answer of G
(The TM D always halts because G always halts.)








MM, accepts G if reject""

MM, rejects G if accept""
MDIn short:








Maccept  does M if reject""

Maccept not  does M if accept""
MDHence:

Now run D on D (“on itself”)…
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Proving Undecidability (3)








Daccept  does D if reject""

Daccept not  does D if accept""
DDResult:

This does not make sense: D only accepts
if it rejects, and vice versa. 
(Note again that D always halts.)

Contradiction: ATM is not TM-decidable.

This proof used diagonalization implicitly…
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Review of Proof (1)







acceptacceptM
M

acceptacceptacceptacceptM
acceptacceptM

MMMM

4

3

2

1

4321

‘Acceptance behavior’ of Mi on Mj
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Review of Proof (2)







rejectrejectacceptacceptM
rejectrejectrejectrejectM
acceptacceptacceptacceptM
rejectacceptrejectacceptM

MMMM

4

3

2

1

4321

‘Deciding behavior’ of G on Mi,Mj
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Review of Proof (3)











acceptacceptrejectrejectD

rejectrejectacceptacceptM
rejectrejectrejectrejectM
acceptacceptacceptacceptM
rejectacceptrejectacceptM

DMMMM

4

3

2

1

4321

Disagreeing D has to occur in list as well…
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Review of Proof (4)











?acceptacceptrejectrejectD

rejectrejectacceptacceptM
rejectrejectrejectrejectM
acceptacceptacceptacceptM
rejectacceptrejectacceptM

DMMMM

4

3

2

1

4321

Contradiction for D on input D.
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TM-Unrecognizable

ATM is not TM-decidable, but it is TM-recognizable.
What about a language that is not recognizable?

Theorem 4.22: If a language A is recognizable 
and its complement Ā is recognizable, then A
is Turing machine decidable.

Proof: Run the recognizing TMs for A and Ā in
parallel on input x. Wait for one of the TMs to 
accept. If the TM for A accepted: “accept x”;
if the TM for Ā accepted: “reject x”.
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ĀTM is not TM-Recognizable
By the previous theorem it follows that ĀTM cannot
be TM-recognizable, because this would imply
that ATM is TM decidable (Corollary 4.23).

co-TM recognizable

We call languages like ĀTM co-TM recognizable.

TM-recognizable

TM decidable
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Things that TMs Cannot Do:

EQTM = { G,H | G and H are TMs 
with L(G)=L(H) }

ETM = { G | G is a TM with L(G)= }

The following languages are also unrecognizable:

To be precise:
• ETM is co-TM recognizable
• EQTM is not even co-Turing recognizable

How can we prove these facts?
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Next: reducibility
• We still need to prove that the Halting 

problem is undecidable.
• Do more examples of undecidable 

problems.
• Try to get a general technique for 

proving undecidability.
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Halting problem
• Assume that it is decidable. So there is a 

TM S that decides 
HALT={<M,w>|M is a TM and M halts on w}
• Use S as a subroutine to get a TM S to 

decide 
ATM = {M,w | M is a TM that accepts w }
• Therefore ATM is decidable. CONTRADICTION!
• Details follow ….
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Halting problem - 2
S = “On input <M,w>
• Run TM R on input <M,w>.
• If R rejects, REJECT.
• If R accepts, simulate M on w until it halts.
• If M has accepted, ACCEPT, else REJECT”
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More undecidability
ETM = {<M>| M is a TM and L(M) = } 
We mentioned that ETM is co-TM recognizable.
We will prove next that ETM is undecidable.

Intuition: You cannot solve this problem UNLESS 
you solve the halting problem!!

But this is hard to formalize, so we use ATM. 
Instead.
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ETM is undecidable
Assume R decides ETM. Use R to design TM S to decide ATM. 

• Given a TM M and input w, define a new TM M’: 
– If xw, reject
– If x=w, accept iff M accepts w

S = “On input <M,w>
• Construct M’ as above.
• Run TM R on input <M’>.
• If R accepts, REJECT; If R rejects, ACCEPT.”


