
11/20/2012 CSE 2001, Fall 2012 1

CSE 2001:
Introduction to Theory of Computation

Fall 2012

Suprakash Datta
datta@cse.yorku.ca

Office: CSEB 3043
Phone: 416-736-2100 ext 77875

Course page: http://www.cs.yorku.ca/course/2001

11/20/2012 CSE 2001, Fall 2012 2

Chapter 4: Decidability

We are now ready to tackle the question:

Which languages are TM-decidable, Turing-
recognizable, or neither?

What can computers do and what not?

We do this by considering the question:

Assuming the Church-Turing thesis, these are
fundamental properties of the languages.

11/20/2012 CSE 2001, Fall 2012 3

Describing TM Programs

Three Levels of Describing algorithms:
• formal (state diagrams, CFGs, et cetera)
• implementation (pseudo-Pascal)
• high-level (coherent and clear English)

Describing input/output format:
TMs allow only strings ∈Σ* as input/output.
If our X and Y are of another form (graph, Turing
machine, polynomial), then we use <X,Y> to
denote ‘some kind of encoding ∈Σ*’.

11/20/2012 CSE 2001, Fall 2012 4

Deciding Regular Languages

The acceptance problem for deterministic
finite automata is defined by:
ADFA = { <B,w> | B is a DFA that accepts w }

Note that this language deals with all possible
DFAs and inputs w, not a specific instance.

Of course, ADFA is a TM-decidable language.

11/20/2012 CSE 2001, Fall 2012 5

ADFA is Decidable (Thm. 4.1)
Proof: Let the input <B,w> be a DFA with

B=(Q, Σ, δ, qstart, F) and w∈Σ*.
The TM performs the following steps:
1) Check if B and w are ‘proper’, if not: “reject”
2) Simulate B on w with the help of two pointers:

Pq ∈ Q for the internal state of the DFA, and
Pw ∈ {0,1,…,|w|} for the position on the string.
While we increase Pw from 0 to |w|, we
change Pq according to the input letter wPw
and the transition function value δ(Pq,wPw).

3) If M accepts w: “accept”; otherwise “reject”

11/20/2012 CSE 2001, Fall 2012 6

Deciding NFA
The acceptance problem for nondeterministic FA
ANFA = { <B,w> | B is an NFA that accepts w }

is a TM decidable language.

Proof: Let the input <B,w> be an NFA with
B=(Q, Σ, δ, qstart, F) and w∈Σ*.
Use our earlier results on finite automata
to transform the NFA B into an equivalent DFA C.
(See Theorem 1.19 how to do this automatically.)
Use the TM of the previous result on <C,w>.
This can all be done with one big, combined TM.

11/20/2012 CSE 2001, Fall 2012 7

Regular Expressions

The acceptance problem
AREX = { <R,w> | R is a regular expression

that can generate w }
is a Turing-decidable language.

Proof Theorem 4.3. On input <R,w>:
1. Check if R is a proper regular expression

and w a proper string
2. Convert R into a DFA B
3. Run earlier TM for ADFA on <B,w>

11/20/2012 CSE 2001, Fall 2012 8

Emptiness Testing (Thm. 4.4)
Another problem relating to DFAs is the
emptiness problem:
EDFA = {<A> | A is a DFA with L(A) = ∅ }

How can we decide this language? This language
concerns the behavior of the DFA A on all possible
strings.

Less obvious than the previous examples.
Idea: check if an accept state of A is reachable
from the start state of A.

11/20/2012 CSE 2001, Fall 2012 9

Proof for DFA-Emptiness
Algorithm for EDFA on input A=(Q,Σ,δ,qstart,F):
1) If A is not proper DFA: “reject”
2) Mark the start state of A qstart
3) Repeat until no new states are marked:

a) Mark any states that can be δ-reached from
any marked state that is already marked

4) If no accept state is marked, “accept”; else
“reject”

11/20/2012 CSE 2001, Fall 2012 10

DFA-Equivalence (Thm. 4.5)
A problem that deals with two DFAs:
EQDFA = {<A,B> | L(A) = L(B) }

Theorem 4.5: EQDFA is TM-decidable.

Proof: Look at the symmetric difference between
the two languages:
Note: “L(A)=L(B)” is equivalent with an empty
symmetric difference between L(A) and L(B).
This difference is expressed by standard DFA
transformations: union, intersection, complement.

))B(L)A(L())B(L)A(L(∩∪∩

11/20/2012 CSE 2001, Fall 2012 11

Proof of Theorem 4.5 (cont.)
Algorithm on given <A,B>:
1) If A or B are not proper DFA: “reject”
2) Construct a third DFA C that accepts the

language
(with standard ‘Chapter 1’ transformations).

3) Decide with the TM of the previous
theorem
whether or not C∈EDFA

4) If C∈EDFA then “accept”;
If C∉EDFA then “reject”

))B(L)A(L())B(L)A(L(∩∪∩

11/20/2012 CSE 2001, Fall 2012 12

Context-Free language problems

Similar languages for context-free grammars:

ACFG = { <G,w> | G is a CFG that generates w }

EQCFG = { <G,H> | G and H are CFGs with
L(G)=L(H) }

ECFG = { <G> | G is a CFG with L(G)=∅ }

The problem with CFGs and PDAs is that they
are inherently non-deterministic.

11/20/2012 CSE 2001, Fall 2012 13

Recall “Chomsky NF”
A context-free grammar G = (V,Σ,R,S) is in
Chomsky normal form if every rule is of the form

A → BC or A → x
with variables A∈V and B,C∈V \{S}, and x∈Σ
For the start variable S we also allow “S → ε”

Chomsky NF grammars are easier to analyze.

The derivation S ⇒* w requires 2|w|–1 steps
(apart from S ⇒ ε).

11/20/2012 CSE 2001, Fall 2012 14

Deciding CFGs (1)
Theorem 4.6: The language
ACFG = { <G,w> | G is a CFG that generates w }

is TM-decidable.

Proof: Perform the following algorithm:
1) Check if G and w are proper, if not “reject”
2) Rewrite G to G’ in Chomsky normal form
3) Take care of w=ε case via S→ε check for G’
4) List all G’ derivations of length 2|w|–1
5) Check if w occurs in this list;

if so “accept”; if not “reject”

11/20/2012 CSE 2001, Fall 2012 15

Deciding CFGs (2)
Theorem 4.7: The language
ECFG = { <G> | G is a CFG with L(G)=∅ }

is TM-decidable.

Proof: Perform the following algorithm:
1) Check if G is proper, if not “reject”
2) Let G=(V,Σ,R,S), define set T=Σ
3) Repeat |V| times:

• Check all rules B→X1…Xk in R
• If B∉T and X1…Xk∈Tk then add B to T

4) If S∈T then “reject”, otherwise “accept”

11/20/2012 CSE 2001, Fall 2012 16

Equality of CFGs

EQCFG = { <G,H> | G and H are CFGs
with L(G)=L(H) }?

For DFAs we could use the emptiness decision
procedure to solve the equality problem.

What about the equality language

For CFGs this is not possible… (why?)
… because CFGs are not closed under
complementation or intersection.

Later we will see that EQCFG is not TM-decidable.

11/20/2012 CSE 2001, Fall 2012 17

Deciding Languages
We now know that the languages:

ACFG = { <G,w> | G is a CFG that generates w }
ADFA = { <B,w> | B is a DFA that accepts w }

are TM decidable.

What about the obvious next candidate
ATM = {<M,w> | M is a TM that accepts w }?

Is one TM capable of simulating all other TMs?

11/20/2012 CSE 2001, Fall 2012 18

Does there exist a Universal TM?
Given a description <M,w> of a TM M and input w,
can we simulate M on w?

We can do so via a universal TM U (2-tape):
1) Check if M is a proper TM

Let M = (Q,Σ,Γ,δ,q0,qaccept,qreject)
2) Write down the starting configuration

< q0w > on the second tape
3) Repeat until halting configuration is reached:

• Replace configuration on tape 2 by next
configuration according to δ

4) “Accept” if qaccept is reached; “reject” if qreject

11/20/2012 CSE 2001, Fall 2012 19

Next
Towards undecidability:

• The Halting Problem

• Countable and uncountable infinities

• Diagonalization arguments

