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Turing machine variants
• Multiple tapes
• 2-way infinite tapes
• Non-deterministic TMs
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Multitape Turing Machines

A k-tape Turing machine M has k different
tapes and read/write heads.  It is thus defined 
by the 7-tuple (Q,,,,q0,qaccept,qreject), with
• Q finite set of states
•  finite input alphabet (without “_”)
•  finite tape alphabet with { _ }    
• q0 start state  Q
• qaccept accept state  Q
• qreject reject state  Q
•  the transition function

: Q\{qaccept,qreject}  k  Q  k  {L,R}k
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k-tape TMs versus 1-tape TMs
Theorem 3.13: For every multi-tape TM M, there
is a single-tape TM M’ such that L(M)=L(M’).
Or, for every multi-tape TM M, there is an 
equivalent single-tape TM M’.

Proving and understanding these kinds of robustness
results, is essential for appreciating the power of the 
Turing machine model.

From this theorem Corollary 3.9 follows:
A language L is TM-recognizable if and only if 
some multi-tape TM recognizes L.
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Outline Proof Thm. 3.13

Let M=(Q,,,,q0,qaccept,qreject) be a k-tape TM.
Construct 1-tape M’ with expanded ’ =  {#}

Represent M-configuration 
u1qja1v1, u2qja2v2,   …, ukqjakvk

by M’ configuration,
qj # u1a1v1 # u2a2v2 # … # ukakvk

(The tapes are seperated by #, the head 
positions are marked by underlined letters.)
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Proof Thm. 3.13 (cont.)

On input w=w1…wn, the TM M’ does the following:
• Prepare initial string: #w1…wn#_##_#_ 
• Read the underlined input letters  k

• Simulate M by updating the input and the
underlining of the head-positions.

• Repeat 2-3 until M has reached a halting state
• Halt accordingly.

PS: If the update requires overwriting a # symbol,
then shift the part # _ one position to the right.
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Non-deterministic TMs
A nondeterministic Turing machine M can have 
several options at every step.  It is defined by 
the 7-tuple (Q,,,,q0,qaccept,qreject), with
• Q finite set of states
•  finite input alphabet (without “_”)
•  finite tape alphabet with { _ }    
• q0 start state  Q
• qaccept accept state  Q
• qreject reject state  Q
•  the transition function

: Q\{qaccept,qreject}    P (Q    {L,R})
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Robustness
Just like k-tape TMs, nondeterministic Turing 
machines are not more powerful than simple TMs:

Every nondeterministic TM has an equivalent 
3-tape Turing machine, which –in turn– has an
equivalent 1-tape Turing machine.

Hence: “A language L is recognizable if and only 
if some nondeterministic TM recognizes it.”

The Turing machine model is extremely robust.
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Computing with non-deterministic 
TMs

C1

C6
C5

C4C3
C2

Evolution of the n.d. TM
represented by a tree 
of configurations (rather
than a single path).

 “reject”

“accept”

If there is (at least)
one accepting leave,
then the TM accepts.

t=1

t=2

t=3
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Simulating Non-deterministic 
TMs with Deterministic Ones

We want to search every path down the tree
for accepting configurations.

Bad idea: “depth first”. This approach can get
lost in never-halting paths.

Good idea: “breadth first”. For time step 1,2,… 
we list all possible configurations of the non-
deterministic TM.  The simulating TM accepts 
when it lists an accepting configuration. 
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Breadth First
Let b be the maximum number
of children of a node.

C1

C6
C5

C4C3
C2

 “reject”

“accept”

t=1

t=2

t=3
Any node in the tree can
be uniquely identified  by
a string  {1,…,b}*.

Example: location of the
rejecting configuration is (3,1).

With the lexicographical listing , (1), (2),…, (b), (1,1),
(1,2),…,(1,b), (2,1),… et cetera, we cover all nodes. 
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Proof of Theorem 3.10
Let M be the non-deterministic TM on input w.

The simulating TM uses three tapes:
T1 contains the input w
T2 the tape content of M on w at a node
T3 describes a node in the tree of M on w.

1) T1 contains w, T2 and T3 are empty
2) Simulate M on w via the deterministic path 

to the node of tape 3. If the node accepts,
“accept”, otherwise go to 3)

3) Increase the node value on T3; go to 2)
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Robustness
Just like k-tape TMs, nondeterministic Turing 
machines are not more powerful than simple TMs:

Every nondeterministic TM has an equivalent 
3-tape Turing machine, which –in turn– has an
equivalent 1-tape Turing machine.

Hence: “A language L is recognizable if and only 
if some nondeterministic TM recognizes it.”

Let’s consider other ways of computing a language…
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Enumerating Languages
Thus far, the Turing machines were ‘recognizers’.

When a TM E generates the words of a language,
E is an enumerator (cf. “recursively enumerable”).

A Turing machine E, enumerates the language L
if it prints an (infinite) list of strings on the tape
such that all elements of L will appear on the tape,
and all strings on the tape are elements of L.
(E starts on an empty input tape.  The strings 
can appear in any order; repetition is allowed.)
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Enumerating = Recognizing
Theorem 3.13: A language L is TM-recognizable
if and only if L is enumerable. 

Proof: (“if”) Take the enumerator E and input w.
Run E and check the strings it generates.
If w is produced, then “accept” and stop,
otherwise let E continue.
(“only if”) Take the recognizer M. Let s1,s2,…
be a listing of all strings *L. 
For j=1,2,… run M on s1,…,sj for j time-steps. 
If M accepts an s, print s.  Keep increasing j.
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Other Computational Models

We can consider many other ‘reasonable’ 
models of computation: DNA computing,
neural networks, quantum computing… 

Experience teaches us that every such model 
can be simulated by a Turing machine.

Church-Turing Thesis:
The intuitive notion of computing and algorithms
is captured by the Turing machine model.
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Importance of the 
Church-Turing Thesis

The Church-Turing thesis marks the end of 
a long sequence of developments that concern
the notions of “way-of-calculating”, “procedure”, 
“solving”, “algorithm”.

For a long time, this was an implicit notion
that defied proper analysis. 

Goes back to Euclid’s GCD algorithm (300 BC).
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“Algorithm”

After Abū ‘Abd Allāh Muhammed 
ibn Mūsā al-Khwārizmī (770 – 840)

His “Al-Khwarizmi on the Hindu Art of 
Reckoning” describes the decimal system
(with zero), and gives methods for calculating 
square roots and other expressions.

“Algebra” is named after an earlier book.
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Hilbert’s 10th Problem

In 1900, David Hilbert (1862–1943) proposed
his Mathematical Problems (23 of them).

The Hilbert’s 10th problem is: Determination 
of the solvability of a Diophantine equation.
Given a Diophantine equation with any number of
unknown quantities and with rational integral numerical
coefficients: To devise a process according to which it
can be determined by a finite number of operations
whether the equation is solvable in rational integers.
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Diophantine Equations

Let P(x1,…,xk) be a polynomial in k variables
with integral coefficients.  Does P have an 
integral root (x1,…,xk)Zk ?

Example: P(x,y,z) = 6x3yz + 3xy2–x3–10 
has integral root (x,y,z) = (5,3,0).

Other example: P(x,y) = 21x2–81xy+1 
does not have an integral root.



11/13/2012 CSE 2001, Fall 2012 46

(Un)solving Hilbert’s 10th
Hilbert’s “…a process according to which it can 
be determined by a finite number of operations…”
needed to be defined in a proper way.

This was done in 1936 by Church and Turing.

The impossibility of such a process for 
exponential equations was shown by Davis, 
Putnam and Robinson.

Matijasevič proved that Hilbert’s 10th problem 
is unsolvable in 1970.


