
11/13/2012 CSE 2001, Fall 2012 1

CSE 2001:
Introduction to Theory of Computation

Fall 2012

Suprakash Datta
datta@cse.yorku.ca

Office: CSEB 3043
Phone: 416-736-2100 ext 77875

Course page: http://www.cs.yorku.ca/course/2001

11/13/2012 CSE 2001, Fall 2012 27

Turing machine variants
• Multiple tapes
• 2-way infinite tapes
• Non-deterministic TMs

11/13/2012 CSE 2001, Fall 2012 28

Multitape Turing Machines

A k-tape Turing machine M has k different
tapes and read/write heads. It is thus defined
by the 7-tuple (Q,,,,q0,qaccept,qreject), with
• Q finite set of states
•  finite input alphabet (without “_”)
•  finite tape alphabet with { _ }    
• q0 start state  Q
• qaccept accept state  Q
• qreject reject state  Q
•  the transition function

: Q\{qaccept,qreject}  k  Q  k  {L,R}k

11/13/2012 CSE 2001, Fall 2012 29

k-tape TMs versus 1-tape TMs
Theorem 3.13: For every multi-tape TM M, there
is a single-tape TM M’ such that L(M)=L(M’).
Or, for every multi-tape TM M, there is an
equivalent single-tape TM M’.

Proving and understanding these kinds of robustness
results, is essential for appreciating the power of the
Turing machine model.

From this theorem Corollary 3.9 follows:
A language L is TM-recognizable if and only if
some multi-tape TM recognizes L.

11/13/2012 CSE 2001, Fall 2012 30

Outline Proof Thm. 3.13

Let M=(Q,,,,q0,qaccept,qreject) be a k-tape TM.
Construct 1-tape M’ with expanded ’ =  {#}

Represent M-configuration
u1qja1v1, u2qja2v2, …, ukqjakvk

by M’ configuration,
qj # u1a1v1 # u2a2v2 # … # ukakvk

(The tapes are seperated by #, the head
positions are marked by underlined letters.)

11/13/2012 CSE 2001, Fall 2012 31

Proof Thm. 3.13 (cont.)

On input w=w1…wn, the TM M’ does the following:
• Prepare initial string: #w1…wn#_##_#_ 
• Read the underlined input letters  k

• Simulate M by updating the input and the
underlining of the head-positions.

• Repeat 2-3 until M has reached a halting state
• Halt accordingly.

PS: If the update requires overwriting a # symbol,
then shift the part # _ one position to the right.

11/13/2012 CSE 2001, Fall 2012 32

Non-deterministic TMs
A nondeterministic Turing machine M can have
several options at every step. It is defined by
the 7-tuple (Q,,,,q0,qaccept,qreject), with
• Q finite set of states
•  finite input alphabet (without “_”)
•  finite tape alphabet with { _ }    
• q0 start state  Q
• qaccept accept state  Q
• qreject reject state  Q
•  the transition function

: Q\{qaccept,qreject}    P (Q    {L,R})

11/13/2012 CSE 2001, Fall 2012 33

Robustness
Just like k-tape TMs, nondeterministic Turing
machines are not more powerful than simple TMs:

Every nondeterministic TM has an equivalent
3-tape Turing machine, which –in turn– has an
equivalent 1-tape Turing machine.

Hence: “A language L is recognizable if and only
if some nondeterministic TM recognizes it.”

The Turing machine model is extremely robust.

11/13/2012 CSE 2001, Fall 2012 34

Computing with non-deterministic
TMs

C1

C6
C5

C4C3
C2

Evolution of the n.d. TM
represented by a tree
of configurations (rather
than a single path).

 “reject”

“accept”

If there is (at least)
one accepting leave,
then the TM accepts.

t=1

t=2

t=3

11/13/2012 CSE 2001, Fall 2012 35

Simulating Non-deterministic
TMs with Deterministic Ones

We want to search every path down the tree
for accepting configurations.

Bad idea: “depth first”. This approach can get
lost in never-halting paths.

Good idea: “breadth first”. For time step 1,2,…
we list all possible configurations of the non-
deterministic TM. The simulating TM accepts
when it lists an accepting configuration.

11/13/2012 CSE 2001, Fall 2012 36

Breadth First
Let b be the maximum number
of children of a node.

C1

C6
C5

C4C3
C2

 “reject”

“accept”

t=1

t=2

t=3
Any node in the tree can
be uniquely identified by
a string  {1,…,b}*.

Example: location of the
rejecting configuration is (3,1).

With the lexicographical listing , (1), (2),…, (b), (1,1),
(1,2),…,(1,b), (2,1),… et cetera, we cover all nodes.

11/13/2012 CSE 2001, Fall 2012 37

Proof of Theorem 3.10
Let M be the non-deterministic TM on input w.

The simulating TM uses three tapes:
T1 contains the input w
T2 the tape content of M on w at a node
T3 describes a node in the tree of M on w.

1) T1 contains w, T2 and T3 are empty
2) Simulate M on w via the deterministic path

to the node of tape 3. If the node accepts,
“accept”, otherwise go to 3)

3) Increase the node value on T3; go to 2)

11/13/2012 CSE 2001, Fall 2012 38

Robustness
Just like k-tape TMs, nondeterministic Turing
machines are not more powerful than simple TMs:

Every nondeterministic TM has an equivalent
3-tape Turing machine, which –in turn– has an
equivalent 1-tape Turing machine.

Hence: “A language L is recognizable if and only
if some nondeterministic TM recognizes it.”

Let’s consider other ways of computing a language…

11/13/2012 CSE 2001, Fall 2012 39

Enumerating Languages
Thus far, the Turing machines were ‘recognizers’.

When a TM E generates the words of a language,
E is an enumerator (cf. “recursively enumerable”).

A Turing machine E, enumerates the language L
if it prints an (infinite) list of strings on the tape
such that all elements of L will appear on the tape,
and all strings on the tape are elements of L.
(E starts on an empty input tape. The strings
can appear in any order; repetition is allowed.)

11/13/2012 CSE 2001, Fall 2012 40

Enumerating = Recognizing
Theorem 3.13: A language L is TM-recognizable
if and only if L is enumerable.

Proof: (“if”) Take the enumerator E and input w.
Run E and check the strings it generates.
If w is produced, then “accept” and stop,
otherwise let E continue.
(“only if”) Take the recognizer M. Let s1,s2,…
be a listing of all strings *L.
For j=1,2,… run M on s1,…,sj for j time-steps.
If M accepts an s, print s. Keep increasing j.

11/13/2012 CSE 2001, Fall 2012 41

Other Computational Models

We can consider many other ‘reasonable’
models of computation: DNA computing,
neural networks, quantum computing…

Experience teaches us that every such model
can be simulated by a Turing machine.

Church-Turing Thesis:
The intuitive notion of computing and algorithms
is captured by the Turing machine model.

11/13/2012 CSE 2001, Fall 2012 42

Importance of the
Church-Turing Thesis

The Church-Turing thesis marks the end of
a long sequence of developments that concern
the notions of “way-of-calculating”, “procedure”,
“solving”, “algorithm”.

For a long time, this was an implicit notion
that defied proper analysis.

Goes back to Euclid’s GCD algorithm (300 BC).

11/13/2012 CSE 2001, Fall 2012 43

“Algorithm”

After Abū ‘Abd Allāh Muhammed
ibn Mūsā al-Khwārizmī (770 – 840)

His “Al-Khwarizmi on the Hindu Art of
Reckoning” describes the decimal system
(with zero), and gives methods for calculating
square roots and other expressions.

“Algebra” is named after an earlier book.

11/13/2012 CSE 2001, Fall 2012 44

Hilbert’s 10th Problem

In 1900, David Hilbert (1862–1943) proposed
his Mathematical Problems (23 of them).

The Hilbert’s 10th problem is: Determination
of the solvability of a Diophantine equation.
Given a Diophantine equation with any number of
unknown quantities and with rational integral numerical
coefficients: To devise a process according to which it
can be determined by a finite number of operations
whether the equation is solvable in rational integers.

11/13/2012 CSE 2001, Fall 2012 45

Diophantine Equations

Let P(x1,…,xk) be a polynomial in k variables
with integral coefficients. Does P have an
integral root (x1,…,xk)Zk ?

Example: P(x,y,z) = 6x3yz + 3xy2–x3–10
has integral root (x,y,z) = (5,3,0).

Other example: P(x,y) = 21x2–81xy+1
does not have an integral root.

11/13/2012 CSE 2001, Fall 2012 46

(Un)solving Hilbert’s 10th
Hilbert’s “…a process according to which it can
be determined by a finite number of operations…”
needed to be defined in a proper way.

This was done in 1936 by Church and Turing.

The impossibility of such a process for
exponential equations was shown by Davis,
Putnam and Robinson.

Matijasevič proved that Hilbert’s 10th problem
is unsolvable in 1970.

