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Next

• Closure properties of CFL 
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Union Closure Properties
Lemma: Let A1 and A2 be two CF languages,
then the union A1A2 is context free as well.

Proof: Assume that the two grammars are
G1=(V1,,R1,S1)  and  G2=(V2,,R2,S2).
Construct a third grammar G3=(V3,,R3,S3) by:
V3 = V1 V2  { S3 }   (new start variable) with
R3 = R1  R2  { S3  S1 | S2 }.

It follows that L(G3) = L(G1)  L(G2).
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Intersection & Complement?
Let A1 and A2 be two CF languages.

We will prove that, in general,
the intersection A1  A2 , 

and 
the complement Ā1= * \ A1

are not context free languages.

One proves this with specific counter examples 
of languages.
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Intersection of CFLs
Let A1 = {ambncn| m,n  0} and 
A2 = {anbncm| m,n  0} be two CF languages.

Then  the intersection A1  A2 = {anbncn| n  0} 
is not a CFL.
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Complements of CFLs
Consider the complement of L = {ww| w is a 
binary string}

L is not a CFL (proved earlier)

Lc is a CFL.
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Complements of CFLs - 2
Suppose that CFLs are closed under 
complementation. Then for CFLs A1, A2, the 
languages Ā1 , Ā2 are CFLs.

So Ā1Ā2  is a CFL.
Therefore its complement is a CFL. By de 
Morgan’s laws, this is the language A1  A2.

This is a contradiction. So CFLs are not closed 
under complementation.
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What do we really know?
Can we always decide if a language L is regular/
context-free or not?

We know:
{ 1x | x = 0 mod 7 } is regular
{ 1x | x is prime } is not regular

But what about  
{ 1x | x and x+2 are prime}?

This is (yet) unknown.
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Describing a Language
The problem lies in the informal notion of 
a description.  
Consider:
{ n | a,b,c: an+bn = cn }

{ x | in year x the first female US president was 
elected}

{ x | x is “an easy to remember number” }

We have to define what we mean by “description”
and “method of deciding”.
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Next
•Computability (Ch 3)

• Turing machines

• TM-computable/recognizable languages

• Variants of TMs
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Turing Machines
After Alan M. Turing (1912–1954)

In 1936, Turing introduced his
abstract model for computation in
his article “On Computable Numbers, with an 
application to the Entscheidungsproblem”.

At the same time, Alonzo Church published 
similar ideas and results.
However, the Turing model has become the
standard model in theoretical computer science.
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Informal Description TM

Depending on its state and the letter xi, the TM 
- writes down a letter, 
- moves its read/write head left or right, and 
- jumps to a new state.

internal 
state set Q

RL

__1#0_1101 At every step, 
the head of the 
TM M reads a 
letter xi from the 
one-way infinite 
tape. 
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Input Convention

state q0

 ___www n21

Initially, the tape contains the input
w*, padded with blanks “_”,
and the TM is in start state q0.

During the computation, the head moves left
and right (but not beyond the leftmost point),
the internal state of the machine changes,
and the content of the tape is rewritten.
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Output Convention

The computation can proceed indefinitely, or the 
machines reaches one of the two halting states:

state qaccept

 _vvv m21

state qreject

 _vvv m21

or



11/6/2012 CSE 2001, Fall 2012 15

Major differences with FA, PDA
• Input can be read more than once
• Scratch memory available, can be 

accessed without restrictions
• The “running time” is not predictable 

from the input – the machine can 
“churn” for a long time even on a short 
input

• So we need a clear indicator of end of 
computation
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Turing Machine (Def. 3.3)
A Turing machine M is defined by a
7-tuple (Q,,,,q0,qaccept,qreject), with
• Q finite set of states
•  finite input alphabet (without “_”)
•  finite tape alphabet with { _ }    
• q0 start state  Q
• qaccept accept state  Q
• qreject reject state  Q
•  the transition function

: Q    Q    {L,R}

Why do you 
need these?
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Configuration of a TM
The configuration of a Turing machine consists of
• the current state q Q
• the current tape contents  *
• the current head location  {0,1,2,…}

This can be expressed as an element of *Q*:

__1#0_1101

q9
becomes “101 q9 1_0#1”
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An Elementary TM Step
Let u,v * ; a,b,c  ; qi,qjQ, and M a TM
with transition function .
We say that the configuration “ua qi bv” yields the 
configuration “uac qj b” if and only if:
(qi,b) = (qj,c,R).

Similarly, “ua qi bv” yields “u qj acb” if and only if
(qi,b) = (qj,c,L).
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Terminology

starting configuration on input w: “q0w”

accepting configuration: “uqacceptv”

rejecting configuration: “uqrejectv”

The accepting and rejecting configurations are
the halting configurations.
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Accepting TMs
A Turing machine M accepts input w*
if and only if there is a finite sequence of 
configurations C1,C2,…,Ck with

• C1 the starting configuration “q0w”
• for all i=1,…,k–1 Ci yields Ci+1 (following M’s )
• Ck is an accepting configuration “uqacceptv”

The language that consists of all inputs that are 
accepted by M is denoted by L(M).
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Turing Recognizable (Def. 3.5)
A language L is Turing-recognizable if and only
if there is a TM M such that L=L(M).

Note: On an input wL, the machine M can
halt in a rejecting state, or it can ‘loop’ indefinitely.

How do you distinguish between a very long
computation and one that will never halt?

Also called: a recursively enumerable language.
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Turing Decidable (Def. 3.6)

Also called: a recursive language.

A language L=L(M) is decided by the TM M if on 
every w, the TM finishes in a halting configuration.
(That is: qaccept for wL and qreject for all wL.)

A language L is Turing-decidable if and only
if there is a TM M that decides L.
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Example 3.7: A = { 0j | j=2n }
Approach: If j=0 then “reject”; If j=1 then “accept”; 
if j is even then divide by two; if j is odd and >1 
then “reject”.  Repeat if necessary.

1. Sweep left to right crossing off every other zero. 
1. If the tape has a single 0, accept. 
2. Else If there are an odd number of zeros 

reject.
2. Return the head to the left-hand end of the tape.
3. goto 1
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State diagrams of TMs
Like with PDA, we can represent Turing machines
by (elaborate) diagrams.

See Figures 3.8 and 3.10 for two examples.

If transition rule says: (qi,b) = (qj,c,R), 
then:

qi qj
b  c,R
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When Describing TMs
It is assumed that you are familiar with TMs and
with programming computers.

Clarity above all: high level description of TMs 
is allowed but should not be used as a trick to
hide the important details of the program.

Standard tools: Expanding the alphabet with
separator “#”, and underlined symbols 0, a,
to indicate ‘activity’.  Typical:  = { 0,1,#,_,0,1 }
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Some more examples
• B={w#w| w  (0,1)* }  (Pg 172)

• C = {ai bj ck | i*j=k, i,j,k >= 1} (Pg 174)
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Turing machine variants
• Multiple tapes
• 2-way infinite tapes
• Non-deterministic TMs


