
11/6/2012 CSE 2001, Fall 2012 1

CSE 2001:
Introduction to Theory of Computation

Fall 2012

Suprakash Datta
datta@cse.yorku.ca

Office: CSEB 3043
Phone: 416-736-2100 ext 77875

Course page: http://www.cs.yorku.ca/course/2001

11/6/2012 CSE 2001, Fall 2012 2

Next

• Closure properties of CFL

11/6/2012 CSE 2001, Fall 2012 3

Union Closure Properties
Lemma: Let A1 and A2 be two CF languages,
then the union A1A2 is context free as well.

Proof: Assume that the two grammars are
G1=(V1,,R1,S1) and G2=(V2,,R2,S2).
Construct a third grammar G3=(V3,,R3,S3) by:
V3 = V1 V2  { S3 } (new start variable) with
R3 = R1  R2  { S3  S1 | S2 }.

It follows that L(G3) = L(G1)  L(G2).

11/6/2012 CSE 2001, Fall 2012 4

Intersection & Complement?
Let A1 and A2 be two CF languages.

We will prove that, in general,
the intersection A1  A2 ,

and
the complement Ā1= * \ A1

are not context free languages.

One proves this with specific counter examples
of languages.

11/6/2012 CSE 2001, Fall 2012 5

Intersection of CFLs
Let A1 = {ambncn| m,n  0} and
A2 = {anbncm| m,n  0} be two CF languages.

Then the intersection A1  A2 = {anbncn| n  0}
is not a CFL.

11/6/2012 CSE 2001, Fall 2012 6

Complements of CFLs
Consider the complement of L = {ww| w is a
binary string}

L is not a CFL (proved earlier)

Lc is a CFL.

11/6/2012 CSE 2001, Fall 2012 7

Complements of CFLs - 2
Suppose that CFLs are closed under
complementation. Then for CFLs A1, A2, the
languages Ā1 , Ā2 are CFLs.

So Ā1Ā2 is a CFL.
Therefore its complement is a CFL. By de
Morgan’s laws, this is the language A1  A2.

This is a contradiction. So CFLs are not closed
under complementation.

11/6/2012 CSE 2001, Fall 2012 8

What do we really know?
Can we always decide if a language L is regular/
context-free or not?

We know:
{ 1x | x = 0 mod 7 } is regular
{ 1x | x is prime } is not regular

But what about
{ 1x | x and x+2 are prime}?

This is (yet) unknown.

11/6/2012 CSE 2001, Fall 2012 9

Describing a Language
The problem lies in the informal notion of
a description.
Consider:
{ n | a,b,c: an+bn = cn }

{ x | in year x the first female US president was
elected}

{ x | x is “an easy to remember number” }

We have to define what we mean by “description”
and “method of deciding”.

11/6/2012 CSE 2001, Fall 2012 10

Next
•Computability (Ch 3)

• Turing machines

• TM-computable/recognizable languages

• Variants of TMs

11/6/2012 CSE 2001, Fall 2012 11

Turing Machines
After Alan M. Turing (1912–1954)

In 1936, Turing introduced his
abstract model for computation in
his article “On Computable Numbers, with an
application to the Entscheidungsproblem”.

At the same time, Alonzo Church published
similar ideas and results.
However, the Turing model has become the
standard model in theoretical computer science.

11/6/2012 CSE 2001, Fall 2012 12

Informal Description TM

Depending on its state and the letter xi, the TM
- writes down a letter,
- moves its read/write head left or right, and
- jumps to a new state.

internal
state set Q

RL

__1#0_1101 At every step,
the head of the
TM M reads a
letter xi from the
one-way infinite
tape.

11/6/2012 CSE 2001, Fall 2012 13

Input Convention

state q0

 ___www n21

Initially, the tape contains the input
w*, padded with blanks “_”,
and the TM is in start state q0.

During the computation, the head moves left
and right (but not beyond the leftmost point),
the internal state of the machine changes,
and the content of the tape is rewritten.

11/6/2012 CSE 2001, Fall 2012 14

Output Convention

The computation can proceed indefinitely, or the
machines reaches one of the two halting states:

state qaccept

 _vvv m21

state qreject

 _vvv m21

or

11/6/2012 CSE 2001, Fall 2012 15

Major differences with FA, PDA
• Input can be read more than once
• Scratch memory available, can be

accessed without restrictions
• The “running time” is not predictable

from the input – the machine can
“churn” for a long time even on a short
input

• So we need a clear indicator of end of
computation

11/6/2012 CSE 2001, Fall 2012 16

Turing Machine (Def. 3.3)
A Turing machine M is defined by a
7-tuple (Q,,,,q0,qaccept,qreject), with
• Q finite set of states
•  finite input alphabet (without “_”)
•  finite tape alphabet with { _ }    
• q0 start state  Q
• qaccept accept state  Q
• qreject reject state  Q
•  the transition function

: Q    Q    {L,R}

Why do you
need these?

11/6/2012 CSE 2001, Fall 2012 17

Configuration of a TM
The configuration of a Turing machine consists of
• the current state q Q
• the current tape contents  *
• the current head location  {0,1,2,…}

This can be expressed as an element of *Q*:

__1#0_1101

q9
becomes “101 q9 1_0#1”

11/6/2012 CSE 2001, Fall 2012 18

An Elementary TM Step
Let u,v * ; a,b,c  ; qi,qjQ, and M a TM
with transition function .
We say that the configuration “ua qi bv” yields the
configuration “uac qj b” if and only if:
(qi,b) = (qj,c,R).

Similarly, “ua qi bv” yields “u qj acb” if and only if
(qi,b) = (qj,c,L).

11/6/2012 CSE 2001, Fall 2012 19

Terminology

starting configuration on input w: “q0w”

accepting configuration: “uqacceptv”

rejecting configuration: “uqrejectv”

The accepting and rejecting configurations are
the halting configurations.

11/6/2012 CSE 2001, Fall 2012 20

Accepting TMs
A Turing machine M accepts input w*
if and only if there is a finite sequence of
configurations C1,C2,…,Ck with

• C1 the starting configuration “q0w”
• for all i=1,…,k–1 Ci yields Ci+1 (following M’s )
• Ck is an accepting configuration “uqacceptv”

The language that consists of all inputs that are
accepted by M is denoted by L(M).

11/6/2012 CSE 2001, Fall 2012 21

Turing Recognizable (Def. 3.5)
A language L is Turing-recognizable if and only
if there is a TM M such that L=L(M).

Note: On an input wL, the machine M can
halt in a rejecting state, or it can ‘loop’ indefinitely.

How do you distinguish between a very long
computation and one that will never halt?

Also called: a recursively enumerable language.

11/6/2012 CSE 2001, Fall 2012 22

Turing Decidable (Def. 3.6)

Also called: a recursive language.

A language L=L(M) is decided by the TM M if on
every w, the TM finishes in a halting configuration.
(That is: qaccept for wL and qreject for all wL.)

A language L is Turing-decidable if and only
if there is a TM M that decides L.

11/6/2012 CSE 2001, Fall 2012 23

Example 3.7: A = { 0j | j=2n }
Approach: If j=0 then “reject”; If j=1 then “accept”;
if j is even then divide by two; if j is odd and >1
then “reject”. Repeat if necessary.

1. Sweep left to right crossing off every other zero.
1. If the tape has a single 0, accept.
2. Else If there are an odd number of zeros

reject.
2. Return the head to the left-hand end of the tape.
3. goto 1

11/6/2012 CSE 2001, Fall 2012 24

State diagrams of TMs
Like with PDA, we can represent Turing machines
by (elaborate) diagrams.

See Figures 3.8 and 3.10 for two examples.

If transition rule says: (qi,b) = (qj,c,R),
then:

qi qj
b  c,R

11/6/2012 CSE 2001, Fall 2012 25

When Describing TMs
It is assumed that you are familiar with TMs and
with programming computers.

Clarity above all: high level description of TMs
is allowed but should not be used as a trick to
hide the important details of the program.

Standard tools: Expanding the alphabet with
separator “#”, and underlined symbols 0, a,
to indicate ‘activity’. Typical:  = { 0,1,#,_,0,1 }

11/6/2012 CSE 2001, Fall 2012 26

Some more examples
• B={w#w| w  (0,1)* } (Pg 172)

• C = {ai bj ck | i*j=k, i,j,k >= 1} (Pg 174)

11/6/2012 CSE 2001, Fall 2012 27

Turing machine variants
• Multiple tapes
• 2-way infinite tapes
• Non-deterministic TMs

