
10/11/2012 CSE 2001, Fall 2012 1

CSE 2001:
Introduction to Theory of Computation

Fall 2012

Suprakash Datta
datta@cse.yorku.ca

Office: CSEB 3043
Phone: 416-736-2100 ext 77875

Course page: http://www.cs.yorku.ca/course/2001

10/11/2012 CSE 2001, Fall 2012 2

Next
•Chapter 2:

• Pushdown Automata

10/11/2012 CSE 2001, Fall 2012 3

More examples of CFLs
• L(G) = {0n12n | n = 1,2,… }
• L(G) = {xxR | x is a string over {a,b}}
• L(G) = {x | x is a string over {1,0} with an

equal number of 1’s and 0’s}

10/11/2012 CSE 2001, Fall 2012 4

Next: Pushdown automata (PDA)
Add a stack to a Finite Automaton

• Can serve as type of memory or counter
• More powerful than Finite Automata
• Accepts Context-Free Languages (CFLs)
• Unlike FAs, nondeterminism makes a
difference for PDAs. We will only study non-
deterministic PDAs and omit Sec 2.4 (3rd Ed)
on DPDAs.

10/11/2012 CSE 2001, Fall 2012 5

Pushdown Automata
Pushdown automata are for context-free
languages what finite automata are for regular
languages.

PDAs are recognizing automata that have a
single stack (= memory):

Last-In First-Out pushing and popping

Non-deterministic PDAs can make non-
deterministic choices (like NFA) to find accepting
paths of computation.

10/11/2012 CSE 2001, Fall 2012 6

Informal Description PDA (1)
input w = 00100100111100101

internal state
set Q

x
y
y
z
x

stack

The PDA M reads w
and stack element.
Depending on
- input wi ,
- stack sj , and
- state qk Q

the PDA M:
- jumps to a new state,
- pushes an element

(nondeterministically)

10/11/2012 CSE 2001, Fall 2012 7

Informal Description PDA (2)
input w = 00100100111100101

internal state
set Q

x
y
y
z
x

stack

After the PDA has
read complete input,
M will be in state Q

If possible to end in
accepting state FQ,
then M accepts w

10/11/2012 CSE 2001, Fall 2012 8

Formal Description of a PDA
A Pushdown Automata M is defined by a
six tuple (Q,,,,q0,F), with
• Q finite set of states
• finite input alphabet
• finite stack alphabet
• q0 start state Q
• F set of accepting states Q
• transition function

: Q P (Q)

10/11/2012 CSE 2001, Fall 2012 9

PDA for L = { 0n1n | n0 }
Example 2.9:
The PDA first pushes “ $ 0n ” on stack.
Then, while reading the 1n string, the
zeros are popped again.
If, in the end, $ is left on stack, then “accept”

q1

q3

q2

q4

, $

, $

1, 0

1, 0

0, 0

10/11/2012 CSE 2001, Fall 2012 10

Machine Diagram for 0n1n

q1

q3

q2

q4

, $

, $

1, 0

1, 0

0, 0

On w = 000111 (state; stack) evolution:
(q1;) (q2; $) (q2; 0$) (q2; 00$)
 (q2; 000$) (q3; 00$) (q3; 0$) (q3; $)
 (q4;) This final q4 is an accepting state

10/11/2012 CSE 2001, Fall 2012 11

Machine Diagram for 0n1n

q1

q3

q2

q4

, $

, $

1, 0

1, 0

0, 0

On w = 0101 (state; stack) evolution:
(q1;) (q2; $) (q2; 0$) (q3; $) (q4;) …
But we still have part of input “01”.
There is no accepting path.

10/11/2012 CSE 2001, Fall 2012 12

An important example
• L = {aibjak| i=j or i=k }
• (Example 2.16, p 115. 3rd ed)

• Try L = {wwR| w ia any binary string }

10/11/2012 CSE 2001, Fall 2012 13

PDAs and CFL

Theorem 2.20 (2.12 in 2nd Ed):
A language L is context-free if and only if there
is a pushdown automata M that recognizes L.

Two step proof:
1) Given a CFG G, construct a PDA MG
2) Given a PDA M, make a CFG GM

10/11/2012 CSE 2001, Fall 2012 14

Converting a CFL to a PDA
• Lemma 2.21 in 3rd Ed
• The PDA should simulate the derivation

of a word in the CFG and accept if there
is a derivation.

• Need to store intermediate strings of
terminals and variables. How?

10/11/2012 CSE 2001, Fall 2012 15

Idea
• Store only a suffix of the string of

terminals and variables derived at the
moment starting with the first variable.

• The prefix of terminals up to but not
including the first variable is checked
against the input.

• A 3 state PDA is enough p 120 3rd Ed.

10/11/2012 CSE 2001, Fall 2012 16

Converting a PDA to a CFG
• Lemma 2.27 in 3rd Ed
• Design a grammar equivalent to a PDA
• Idea: For each pair of states p,q we

have a variable Apq that generates all
strings that take the automaton from p
to q (empty stack to empty stack).

10/11/2012 CSE 2001, Fall 2012 17

Some details
Assume

– Single accept state
– Stack emptied before accepting
– Each transition either pops or pushes a

symbol
• Can create rules for all the possible

cases (p 122 in 3rd Ed)

