CSE 2001: Introduction to Theory of Computation Fall 2012

Suprakash Datta

datta@cse.yorku.ca

Office: CSEB 3043

Phone: 416-736-2100 ext 77875

Course page: http://www.cs.yorku.ca/course/2001

Next: Finite automata

Ch. 1.1: Deterministic finite automata (DFA)

We will:

- Design automata for simple problems
- Study languages recognized by finite automata.

Recognizing finite languages

- Just need a lookup table and a search algorithm
- Problem cannot express infinite sets,
 e.g. odd integers

Finite Automata

The simplest machine that can recognize an infinite language.

"Read once", "no write" procedure.

Useful for describing algorithms also. Used a lot in network protocol description.

Remember: DFA's can accept finite languages as well.

A Simple Automaton (0)

accepting state

A Simple Automaton (1)

on input "0110", the machine goes:

$$q_1 \rightarrow q_1 \rightarrow q_2 \rightarrow q_2 \rightarrow q_3 = "reject"$$

9/13/2012

CSE 2001, Fall 2012

A Simple Automaton (2)

on input "101", the machine goes:

$$q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow q_2 = \text{``accept''}$$

A Simple Automaton (3)

010: reject

11: accept

010100100100100: accept

010000010010: reject

ε: reject

Examples of languages accepted by DFA

- L = { w | w ends with 1}
- L = { w | w contains sub-string 00}
- L = { w | |w| is divisible by 3}
- L = { w | |w| is odd or w ends with 1}
- L = { w | |w| is divisible by 10⁶}

Note: $\Sigma = \{0,1\}$ in each case

DFA design

- Design DFA for language
 - $-L = \{w \in \{0,1\}^* \mid w \text{ contains substring } 01\}$
- Three states to remember:
 - Have seen the substring 01
 - Not seen substring 01 and last symbol was 0
 - Not seen substring 01 and last symbol was not 0
- General principles?

DFA: Formal definition

- A deterministic finite automaton (DFA)
 M is defined by a 5-tuple M=(Q,Σ,δ,q₀,F)
 - Q: finite set of states
 - $-\Sigma$: finite alphabet
 - $-\delta$: transition function $\delta: \mathbb{Q} \times \Sigma \to \mathbb{Q}$
 - $-q_0 \in \mathbb{Q}$: start state
 - F⊆Q: set of accepting states

$M = (Q, \Sigma, \delta, q, F)$

$$\underline{\text{states}} \ Q = \{q_1, q_2, q_3\}$$

alphabet $\Sigma = \{0,1\}$

start state q1

accept states F={q₂}

transition function δ :

91	1 92	Q ₃
	C),1

	0	1
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_2	q_2

9/13/2012

CSE 2001, Fall 2012

Recognizing Languages (defn)

A finite automaton $\mathbf{M} = (\mathbf{Q}, \Sigma, \delta, \mathbf{q}, \mathbf{F})$ accepts a string/word $\mathbf{w} = \mathbf{w}_1 \dots \mathbf{w}_n$ if and only if there is a sequence $\mathbf{r}_0 \dots \mathbf{r}_n$ of states in \mathbf{Q} such that:

1)
$$r_0 = q_0$$

2)
$$\delta(r_i, w_{i+1}) = r_{i+1}$$
 for all $i = 0, ..., n-1$

3)
$$r_n \in F$$

Regular Languages

The language recognized by a finite automaton M is denoted by L(M).

A <u>regular language</u> is a language for which there exists a recognizing finite automaton.

Two DFA Questions

Given the description of a finite automaton $\mathbf{M} = (\mathbf{Q}, \Sigma, \delta, \mathbf{q}, \mathbf{F})$, what is the language $\mathbf{L}(\mathbf{M})$ that it recognizes?

In general, what kind of languages can be recognized by finite automata? (What are the regular languages?)