CSE 2001: Introduction to Theory of Computation Fall 2012

Suprakash Datta

datta@cse.yorku.ca

Office: CSEB 3043 Phone: 416-736-2100 ext 77875

Course page: http://www.cs.yorku.ca/course/2001

10/2/2012

CSE 2001, Fall 2012

Non-regular Languages §1.4

Which languages cannot be recognized by finite automata?

Example: L={ $0^{n}1^{n} | n \in N$ }

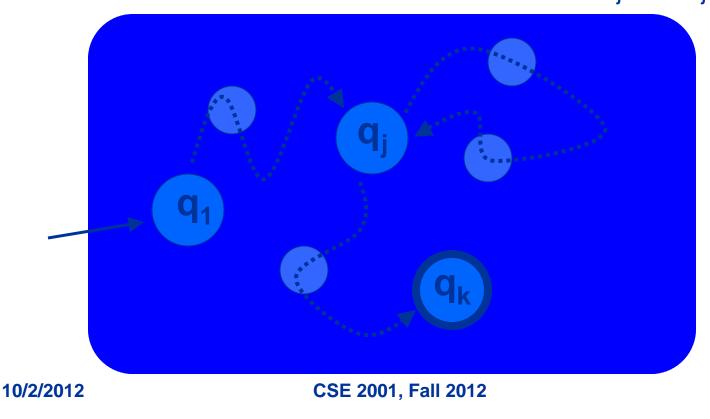
- 'Playing around' with FA convinces you that the 'finiteness' of FA is problematic for "all $n \in N$ "
- The problem occurs between the 0ⁿ and the 1ⁿ
- Informal: the memory of a FA is limited by the the number of states |Q|

Proving non-regularity

- Prove a general statement -- NO DFA exists for a given problem.
- Cannot assume an automaton structure or a specific strategy
- Need an argument that holds for ALL DFA's

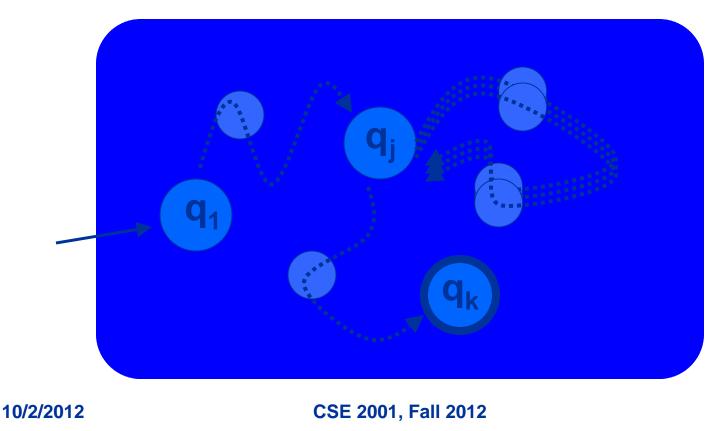
Repeating DFA Paths

Consider an accepting DFA M with size |Q|On a string of length p, p+1 states get visited For p \geq |Q|, there must be a j such that the computational path looks like: $q_1, ..., q_i, ..., q_i, ..., q_k$



Repeating DFA Paths

The action of the DFA in q_j is always the same. If we repeat (or ignore) the q_j, \ldots, q_j part, the new path will again be an accepting path



Line of Reasoning

Proof by contradiction:

- <u>Assume</u> that L is regular
- Hence, there is a DFA M that recognizes L
- For strings of length ≥ |Q| the DFA M has to 'repeat itself'
- Show that M will accept strings outside L
- Conclude that the assumption was wrong

Note that we use the simple DFA, not the more elaborate (but equivalent) NFA or GNFA

CSE 2001, Fall 2012

Pumping Lemma (Thm 1.37)

For every regular language L, there is a <u>pumping length</u> p, such that for any string $s \in L$ and $|s| \ge p$, we can write s = xyz with

1) x yⁱ z \in L for every $i \in \{0, 1, 2, ...\}$ 2) $|y| \ge 1$ 3) $|xy| \le p$

Note that 1) implies that $xz \in L$ 2) says that y cannot be the empty string ε Condition 3) is not always used

Formal Proof of Pumping Lemma

Let M = $(Q, \Sigma, \delta, q_1, F)$ with Q = $\{q_1, \dots, q_n\}$ Let $s = s_1 \dots s_n \in L(M)$ with $|s| = n \ge p$ Computational path of M on s is the sequence $r_1, \ldots, r_{n+1} \in \mathbb{Q}^{n+1}$ with $\mathbf{r}_1 = \mathbf{q}_1, \ \mathbf{r}_{n+1} \in \mathbf{F}$ and $\mathbf{r}_{t+1} = \delta(\mathbf{r}_t, \mathbf{s}_t)$ for $1 \leq t \leq n$ Because $n+1 \ge p+1$, there are two states such that $r_i = r_k$ (with j<k and k \leq p+1) Let $x = s_1 \dots s_{i-1}$, $y = s_i \dots s_{k-1}$, and $z = s_k \dots s_{n+1}$ x takes M from $q_1 = r_1$ to r_i , y takes M from r_i to r_i , and z takes M from r_i to $r_{n+1} \in F$ As a result: xyⁱz takes M from q_1 to $r_{n+1} \in F$ (i ≥ 0)

Formal Proof of Pumping Lemma

Let M = $(Q, \Sigma, \delta, q_1, F)$ with Q = $\{q_1, \dots, q_n\}$ Let $s = s_1 \dots s_n \in L(M)$ with $|s| = n \ge p$ Computational path of M on s is the sequence $r_1, \ldots, r_{n+1} \in \mathbb{Q}^{n+1}$ with $r_1 = q_1, r_{n+1} \in F$ and $r_{t+1} = \delta(r_t, s_t)$ for $1 \le t \le n$ Because $n+1 \ge p+1$, there are two terms such that $r_i = r_k (\sqrt[4]{y} \ge 1 \text{ and } |xy| \le p$ Let $x = s_1 \dots s_{i-1}$, $y = s_i \dots s_{k-1}$, and $z = s_k \dots s_{n+1}$ x takes M from $q_1=r_1$ to r_i , y takes M from r_i to r_i , and z takes M from r, to $r_{n+1} \in F$ As a result x yⁱ z \in L(M) for every i \in {0,1,2,...} 0)

Pumping 0ⁿ1ⁿ (Ex. 1.38)

Assume that $B = \{0^n1^n \mid n \ge 0\}$ is regular Let p be the pumping length, and $s = 0^p1^p \in B$ <u>P.L.</u>: $s = xyz = 0^p1^p$, with $xy^iz \in B$ for all $i\ge 0$ Three options for y:

> 1) $y=0^k$, hence $xyyz = 0^{p+k}1^p \notin B$ 2) $y=1^k$, hence $xyyz = 0^p1^{k+p} \notin B$ 3) $y=0^k1^l$, hence $xyyz = 0^p1^l0^k1^p \notin B$

Conclusion: The pumping lemma does not hold, the language B is not regular.

Another example

$F = \{ ww | w \in \{0,1\}^* \}$ (Ex. 1.40)

Let p be the pumping length, and take $s = 0^{p}10^{p}1$ Let $s = xyz = 0^{p}10^{p}1$ with condition 3) $|xy| \le p$ Only one option: $y=0^{k}$, with $xyyz = 0^{p+k}10^{p}1 \notin F$

Without 3) this would have been a pain.

Intersecting Regular Languages

Let C = { w | # of 0s in w equals # of 1s in w} Problem: If $xyz \in C$ with $y \in C$, then $xy^iz \in C$ <u>Idea</u>: If C is regular and F is regular, then the intersection C \cap F has to be regular as well

Solution: Assume that C is regular Take the regular $F = \{ 0^{n}1^{m} | n,m \in N \}$, then for the intersection: $C \cap F = \{ 0^{n}1^{n} | n \in N \}$ But we know that $C \cap F$ is not regular Conclusion: C is not regular

Pumping Down E = { $0^{i}1^{j} | i \ge j$ }

Problem: 'pumping up' s=0^p1^p with y=0^k gives xyyz = 0^{p+k}1^p, xy³z = 0^{p+2k}1^p, which are all in E (hence do not give contradictions) Solution: pump down to xz = 0^{p-k}1^p. Overall for s = xyz = 0^p1^p (with |xy|≤p): y=0^k, hence xz = 0^{p-k}1^p \notin E

Contradiction: E is not regular

Pumping lemma usage - steps

- You are given a pumping number
- You choose a string
- You are told x,y,z (satisfying some criteria)
- You choose i in xyⁱz, and show it violates criterion of set for that i.

Alternatives for proving non-regularity

- Simpler technique (not in the text)
 - Based on the Myhill-Nerode Theorem
 - -less general