# CSE 2001: Introduction to Theory of Computation Fall 2012

#### **Suprakash Datta**

datta@cse.yorku.ca

Office: CSEB 3043

Phone: 416-736-2100 ext 77875

Course page: http://www.cs.yorku.ca/course/2001

# Characterizing Regular Expressions

 We prove that Regular expressions (RE) and Regular Languages are the same set, i.e.,

RE = RL

#### Thm 1.54: RL ~ RE

We need to prove both ways:

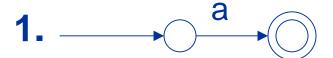
- If a language is described by a regular expression, then it is regular (Lemma 1.55) (We will show we can convert a regular expression R into an NFA M such that L(R)=L(M))
- The second part:
   If a language is regular, then it can be described by a regular expression (Lemma 1.60)

# Regular expression to NFA

Claim: If L = L(e) for some RE e, then L = L(M) for some NFA M

Construction: Use inductive defn

- 1. R = a, with  $a \in \Sigma$
- 2.  $R = \varepsilon$
- 3.  $R = \emptyset$
- 4.  $R = (R_1 \cup R_2)$ , with  $R_1$  and  $R_2$  regular expressions
- 5.  $R = (R_1 \bullet R_2)$ , with  $R_1$  and  $R_2$  regular expressions
- 6.  $R = (R_1^*)$ , with  $R_1$  a regular expression



- **2.**
- **3.** —

4,5,6: similar to closure of RL under regular operations.

### **Examples of RE to NFA conv.**

```
ab \cup ba L = \{ab,ba\} 
 (ab)* L = \{\epsilon, ab,abab,ababab,......\}
```

#### Back to RL ~ RE

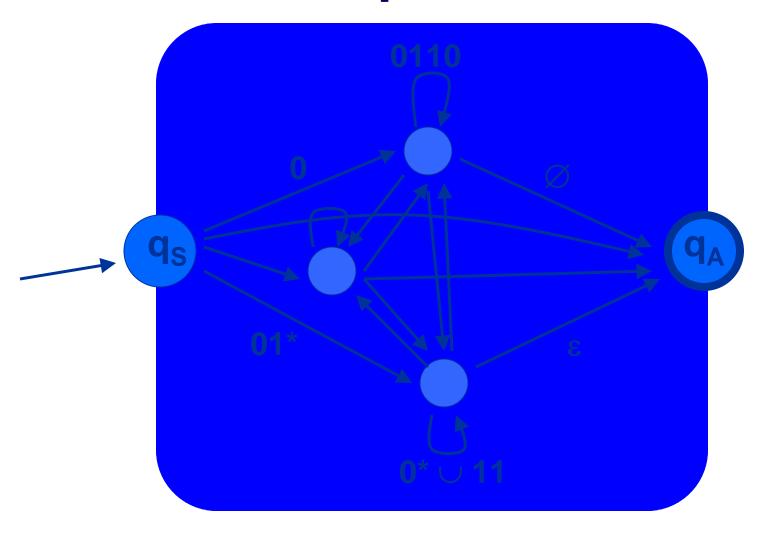
The second part (Lemma 1.60):

If a language is regular, then it can be described by a regular expression.

- Proof strategy:
  - regular implies equivalent DFA.
  - convert DFA to GNFA (generalized NFA).
  - convert GNFA to NFA.

GNFA: NFA that have regular expressions as transition labels

# **Example GNFA**



#### **Generalized NFA - definition**

Generalized non-deterministic finite automaton

 $M=(Q, \Sigma, \delta, q_{start}, q_{accept})$  with

- Q finite set of states
- Σ the input alphabet
- q<sub>start</sub> the start state
- q<sub>accept</sub> the (unique) accept state
- $\delta$ :(Q {q<sub>accept</sub>})×(Q {q<sub>start</sub>})  $\rightarrow \mathcal{R}$  is the transition function

( $\mathcal{R}$  is the set of regular expressions over  $\Sigma$ )

(NOTE THE NEW DEFN OF  $\delta$ )

#### Characteristics of GNFA's $\delta$

• 
$$\delta:(Q\setminus\{q_{accept}\})\times(Q\setminus\{q_{start}\})\to \mathcal{R}$$

The interior Q\{q<sub>accept</sub>,q<sub>start</sub>} is fully connected by  $\delta$  From q<sub>start</sub> only 'outgoing transitions' To q<sub>accept</sub> only 'ingoing transitions' Impossible q<sub>i</sub> $\rightarrow$ q<sub>j</sub> transitions are labeled " $\delta$ (q<sub>i</sub>,q<sub>j</sub>) =  $\varnothing$ "

Observation: This GNFA recognizes the language L(R)

#### **Proof Idea of Lemma 1.60**

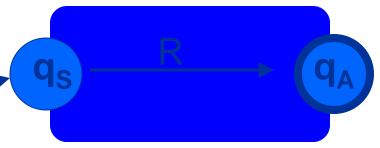
Proof idea (given a DFA M):

Construct an equivalent GNFA M' with k≥2 states

Reduce one-by-one the internal states until k=2

This GNFA will be of the form

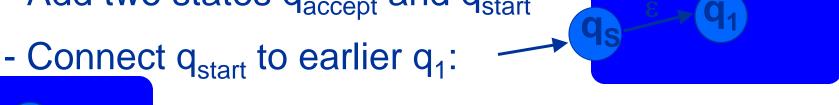
This regular expression R will be such that L(R) = L(M)

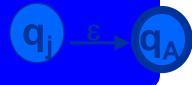


# **DFA M** → **Equivalent GNFA M**'

Let M have k states  $Q = \{q_1, ..., q_k\}$ 

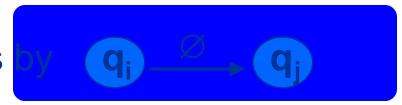
- Add two states q<sub>accept</sub> and q<sub>start</sub>





- Connect old accepting states to q<sub>accept</sub>

- Complete missing transitions



- Join multiple transitions:

becomes



#### Remove Internal state of GNFA

If the GNFA M has more than 2 states, 'rip' internal q<sub>rip</sub> to get equivalent GNFA M' by:

- Removing state q<sub>rip</sub>: Q'=Q\{q<sub>rip</sub>}
- Changing the transition function  $\delta$  by

$$\delta'(q_i,q_j) = \delta(q_i,q_j) \cup (\delta(q_i,q_{rip})(\delta(q_{rip},q_{rip}))^*\delta(q_{rip},q_j))$$
 for every  $q_i \in Q' \setminus \{q_{accept}\}$  and  $q_i \in Q' \setminus \{q_{start}\}$ 

$$\begin{array}{c|c}
R_1 & q_{rip} & R_2 \\
\hline
q_i & R_3 & q_j
\end{array}$$

$$= \boxed{q_i & R_4 \cup (R_1 R_2 * R_3) & q_j}$$

#### **Proof Lemma 1.60**

Let M be DFA with k states

Create equivalent GNFA M' with k+2 states

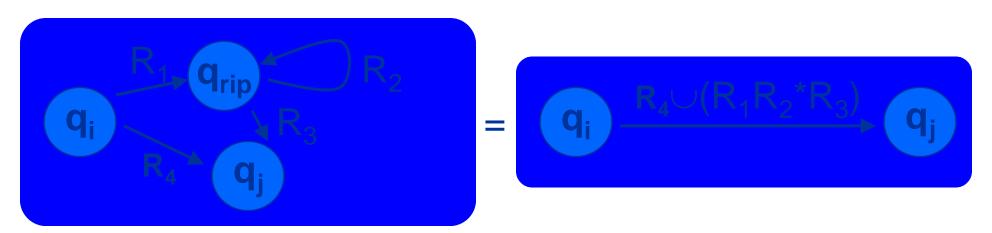
Reduce in k steps M' to M'' with 2 states

The resulting GNFA describes a single regular expressions R

The regular language L(M) equals the language L(R) of the regular expression R

#### **Proof Lemma 1.60 - continued**

- Use induction (on number of states of GNFA) to prove correctness of the conversion procedure.
- Base case: k=2.
- Inductive step: 2 cases q<sub>rip</sub> is/is not on accepting path.



9/27/2012

## Recap RL = RE

Let R be a regular expression, then there exists an NFA M such that L(R) = L(M)

The language L(M) of a DFA M is equivalent to a language L(M') of a GNFA = M', which can be converted to a two-state M"

The transition  $q_{start}$ — $R \rightarrow q_{accept}$  of M" obeys L(R) = L(M")

Hence:  $RE \subset NFA = DFA \subset GNFA \subset RE$ 

## **Example**

L = {w| the sum of the bits of w is odd}