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Equivalence of NFA, DFA
• Pages 54-58 (Sipser, 2nd ed)
• We will prove that every NFA is 

equivalent to a DFA (with upto 
exponentially more states).

• Non-determinism does not help FA’s to 
recognize more languages!
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Epsilon Closure
• Let N=(Q,,,q0,F) be any NFA
• Consider any set R  Q
• E(R) = {q|q can be reached from a state 

in R by following 0 or more -transitions}
• E(R) is the epsilon closure of R under -

transitions
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Proving equivalence
*languages allFor L

MN

MLLiffNLL

DFA                     NFA   
somefor                      somefor   

)()( 

One direction is easy:

A DFA M is also a NFA N. So N does not 
have to be `constructed’ from M
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Proving equivalence – contd.

• N = (Q,,,q0,F)

• Construct M= (Q’,,’,q’0,F’) such that,
– for any string w  *, 

– w is accepted by N iff w is accepted by M

The other direction: 
Construct M from N
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Special case
• Assume that  is not used in the NFA N.

- Need to keep track of each subset of N

- So Q’ = P (Q), q’0 = {q0}

- ’(R,a) = ((r,a))  over all r  R, R  Q’
- F’ = {R  Q’| R contains an accept state of N}

• Now let us assume that  is used.
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Construction (general case)

1. Q’ = P(Q)
2. q’0 = E({q0})
3. for all R  Q’ and a Σ

’(R, a) = {q  Q|q  E((r,a)) for some 
rR}

4. F’ = { R  Q’| R contains an accept 
state of N}
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Why the construction works
• for any string w  *, 

• w is accepted by N iff w is accepted by 
M

• Can prove using induction on the 
number of steps of computation…
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State minimization
It may be possible to design DFA’s without the 
exponential blowup in the  number of states. 
Consider the NFA and DFA below. 
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Characterizing FA languages
• Regular expressions
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Regular Expressions (Def. 1.52)
Given an alphabet , R is a regular expression if:
(INDUCTIVE DEFINITION)

• R = a, with a
• R = 
• R = 
• R = (R1R2), with R1 and R2 regular expressions
• R = (R1R2), with R1 and R2 regular expressions
• R = (R1*), with R1 a regular expression

Precedence order: *, ,
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Regular Expressions
• Unix ‘grep’ command: Global Regular 

Expression and Print
• Lexical Analyzer Generators (part of 

compilers)
• Both use regular expression to DFA 

conversion
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Examples
• e1 = a  b,        L(e1) = {a,b} 
• e2 = ab  ba,    L(e2) = {ab,ba} 
• e3 = a*,  L(e3) = {a}* 
• e4 = (a  b)*,    L(e4) = {a,b}*
• e5 = (em . en),    L(e5) = L(em) • L(en)
• e6 = a*b  a*bb,    

L(e6) = {w| w  {a,b}* and w has 0 or 
more a’s followed by 1 or 2 b’s}


