Equivalence of NFA, DFA

- Pages 54-58 (Sipser, 2nd ed)
- We will prove that every NFA is equivalent to a DFA (with upto exponentially more states).
- Non-determinism does not help FA's to recognize more languages!

Epsilon Closure

- Let $N=(Q,\Sigma,\delta,q_0,F)$ be any NFA
- Consider any set $R \subseteq Q$
- E(R) = {q|q can be reached from a state in R by following 0 or more ε-transitions}
- E(R) is the epsilon closure of R under εtransitions

Proving equivalence

For all languages $L \subseteq \Sigma^*$

L = L(N)	iff	L = L(M)
for some		for some
NFA N		DFA M

One direction is easy:

A DFA M is also a NFA N. So N does not have to be `constructed' from M

9/25/2012

CSE 2001, Fall 2012

Proving equivalence – contd.

The other direction: Construct M from N

- $N = (Q, \Sigma, \delta, q_0, F)$
- Construct $M = (Q', \Sigma, \delta', q'_0, F')$ such that,
 - for any string $w \in \Sigma^*$,
 - w is accepted by N iff w is accepted by M

Special case

- Assume that ϵ is not used in the NFA N.
 - Need to keep track of each subset of N
 - So Q' = $\mathcal{P}(Q)$, q'₀ = {q₀}
 - $\delta'(R,a) = \bigcup(\delta(r,a))$ over all $r \in R, R \in Q'$
 - F' = {R \in Q' | R contains an accept state of N}
- Now let us assume that $\boldsymbol{\epsilon}$ is used.

CSE 2001, Fall 2012

Construction (general case)

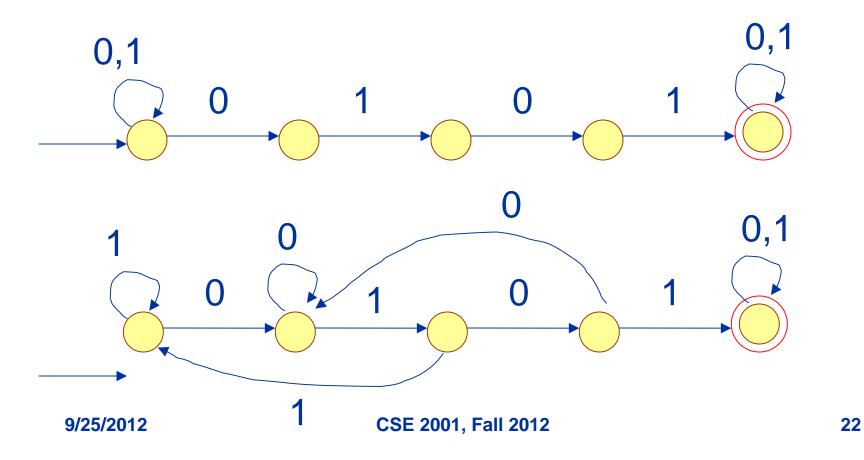
- 1. Q' = P(Q)
- 2. $q'_0 = E(\{q_0\})$
- 3. for all $R \in Q'$ and $a \in \Sigma$ $\delta'(R, a) = \{q \in Q | q \in E(\delta(r,a)) \text{ for some } r \in R\}$
- 4. F' = { R \in Q'| R contains an accept state of N}

Why the construction works

- for any string $w \in \Sigma^*$,
- w is accepted by N iff w is accepted by M
- Can prove using induction on the number of steps of computation...

State minimization

It may be possible to design DFA's without the exponential blowup in the number of states. Consider the NFA and DFA below.



Characterizing FA languages

• Regular expressions

Regular Expressions (Def. 1.52)

Given an alphabet Σ , R is a regular expression if: (INDUCTIVE DEFINITION)

- R = a, with $a \in \Sigma$
- **R** = ε
- R = Ø
- $R = (R_1 \cup R_2)$, with R_1 and R_2 regular expressions
- $R = (R_1 \bullet R_2)$, with R_1 and R_2 regular expressions
- $R = (R_1^*)$, with R_1 a regular expression

Precedence order: *, \bullet , \cup

CSE 2001, Fall 2012

Regular Expressions

- Unix 'grep' command: Global Regular Expression and Print
- Lexical Analyzer Generators (part of compilers)
- Both use regular expression to DFA conversion

Examples

- $e_1 = a \cup b$, $L(e_1) = \{a, b\}$
- $e_2 = ab \cup ba$, $L(e_2) = \{ab, ba\}$
- $e_3 = a^*$, $L(e_3) = \{a\}^*$
- $e_4 = (a \cup b)^*$, $L(e_4) = \{a, b\}^*$
- $e_5 = (e_m \cdot e_n), \quad L(e_5) = L(e_m) \cdot L(e_n)$
- $e_6 = a^*b \cup a^*bb$, $L(e_6) = \{w | w \in \{a,b\}^* \text{ and } w \text{ has } 0 \text{ or}$ more a's followed by 1 or 2 b's}