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Last class: examples of DFA

Today
e Study limitations of DFA

e Introduce nondeterminism in finite
automata. [Ch 1.2 In Sipser]
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Recall: Regular Languages

The language recognized by a finite
automaton M iIs denoted by L(M).

A reqular language Is a language
for which there exists a recognizing
finite automaton.
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Recall: Two DFA Questions

Given the description of a finite
automaton M = (Q,,0,q,F), what Is
the language L(M) that it recognizes?

In general, what kind of languages
can be recognized by finite automata?
(What are the regular languages?)
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Complement of a regular language

e Swap the accepting and non-accept
states of M to get M’

 The complement of a regular language
IS regular.
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Terminology: closure

* A setis defined to be closed under an
operation If that operation on members
of the set always produces a member of

the same set. (adapted from wikipedia)
E.g.:
 The integers are closed under addition, multiplication.
 The integers are not closed under division
 X*is closed under concatenation

« A set can be defined by closure -- £* Is called the
(Kleene) closure of £ under concatenation.
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Terminology: Regular Operations

Pages 44-47 (Sipser)

he regular operations are:
1. Union
2. Concatenation

3. Star (Kleene Closure): For a language A,
A* = {w,w,w,...w,| K> 0, and each w, eA}
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Closure Properties

o Set of regular languages is closed
under

— Union
— Concatenation
— Star (Kleene Closure)
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Union of Two Languages

Theorem 1.12: If A, and A, are regular
languages, then soiIs A, U A,.

(The regular languages are ‘closed’ under
the union operation.)

Proof idea: A, and A, are regular, hence there are
two DFA M, and M,, with A;=L(M;) and A,=L(M,).
Out of these two DFA, we will make a third
automaton M; such that L(M;) = A; U A..
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How do we combine DFA?

Q: Can we design a DFA that somehow
“simulates’” them both and accepts
when at least one of them accepts?

Ans: Yes, through a clever construction.
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Proof Union-Theorem (1)

M,=(Q4,Z,9,,d,,F,) and M,=(Q,,%,5,,q,,F>)

Define M; = (Q5,X,05,03,F5) by:
* Q3 = Q1XQ2 {(ry,rp) | rpeQq and r,eQy}

* 33((ry,Mp),a) = (34(ry,a), 0,(r,,a))
= (01,05)

o F3={(ryr) | rieF, orryeky}
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Proof Union-Theorem (2)

The automaton M, = (Q3,X,05,03,F3) runs M,
and M, In ‘parallel’ on a string w.

In the end, the final state (r,,r,) ‘knows’
If welL, (viar,eF;?) and if wel, (via r,eF,?)

The accepting states F, of M; are such that
welL(M,) If and only if welL, or wel,, for:
Fo={(r.r,) | r,eF,orr,eF,}.
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Concatenation of L, and L,

Definition: L,»L, = { Xy | xeL, and yelL,}
Example: {a,b}  {0,11} = {a0,a11,b0,b11}

Theorem 1.13: If L, and L, are regular
languages, then so is L,-L..

(The regular languages are ‘closed’ under
concatenation.)
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Proving Concatenation Thm.

Consider the concatenation:
{1,01,11,001,011,...} - {0,000,00000,...}
(That is: the bit strings that end with a “1”,
followed by an odd number of 0’s.)

Problem is: given a string w, how does
the automaton know where the L, part
stops and the L, substring starts?

We need an M with ‘lucky guesses’.
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Nondeterminism

Nondeterministic machines are capable
of being lucky, no matter how small the
probability.

A nondeterministic finite automaton
has transition rules/possibilities like

15
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A Nondeterministic Automaton
0,1 0,1

= [

- I ‘ ‘ ‘ ‘

This automaton accepts “01107, because
there Is a possible path that leads to an
accepting state, namely:

. >0 >0, > (s > ;> 04
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A Nondeterministic Automaton
0,1 0,1

U/\/\/\Q

. ‘ ‘ ‘

The string 1 gets rejected: on “1” the
automaton can only reach: {d,,0,,03}-
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Nondeterminism ~ Parallelism

For any (sub)string w, the nondeterministic
automaton can be in a set of possible states.

If the final set contains an accepting state,
then the automaton accepts the string.

“The automaton processes the inputin a
parallel fashion. Its computational path
IS no longer a line, but a tree.” (Fig. 1.28)
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Are NFA more powerful than
DFA?

 NFA can solve every problem that DFA
can (DFA are also NFA)

* Need proof
e Let us define NFA formally
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Nondeterministic FA (def.)

e A nondeterministic finite automaton
(NFA) M Is defined by a 5-tuple
M=(Q,X,0,q,,F), with

—Q: finite set of states
— X finite alphabet, X _* U {&}
—&: transition function 8:QxX_—®(Q)

—(,cQ: start state
—FcQ: set of accepting states
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Nondeterministic 3:QxX . —»>®(Q)

he function 6:QxX.—®(Q) is the crucial

difference. It means:
“When reading symbol “a” while in state q,
one can go to one of the states in 6(q,a)cQ.”

The ¢ In X, = XuU{e} takes care of the
empty string transitions.
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Recognizing Languages (def)

A nondeterministic FA M = (Q,X,0,q,F) accepts

a string w = w,...w, If and only if we can rewrite
wasy,...y, with y,eX_ andthere is a sequence
ly...Iy, Of states in Q such that:

1) re=do
2) I, € 0(r,,y.,1) for all i=0,...,m-1

3) r,eF

m
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NFA drawing conventions

 Not all transitions are labeled

* Unlabeled transitions are assumed to
go to a reject state from which the
automaton cannot escape
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NFA examples

>={0,1}
1. Strings ending in 01
2. String containing 01

>={a,b,c}
1. Strings ending in ab, bc, ca
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Closure under regular operations
Union (new proof):

Ny ) SR

-

FIGURE 1.46
Construction of an NFA N to recognize A; U A,
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Closure under regular operations
Concatenation:
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FIGURE 1.48
Construction of N to recognize Ay o Ag
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Closure under regular operations
Star:
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FIGURE 1.50
Construction of N to recognize A*
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Incorrect reasoning about RL

» Since L, = {w| w=a", n € N},
L, = {w|w =Db", n € N} are regular,

therefore L, o L, = {w| w=a"b", n € N} is
regular

 |f L, Is aregular language, then
L, = {wR|w e L.} is regular, and

Therefore Ly e L, ={wwR |w e L.} is
regular
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Exercises

[Sipser 1.7 in 3 Ed, 1.5 in 2"d Ed]: Give NFAS
with the specified number of states that

recognize the following languages over the
alphabet >={0,1}:

—

. {w | w ends with 00}, three states

. {0}; two states

. { w | w contains even number of Os, or exactly
two 1s}, six states

4. {O" | neN }, one state

W N
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Exercises - 2

Prove the following result:
“If L, and L, are regular languages, then
L, NL, IS a regular language too0.”

Describe the language that is recognized
by this nondeterministic automaton:

1 0,1

. 0 0/\6/:@
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