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Last class: examples of DFA
Today : 
• Study limitations of DFA
• Introduce nondeterminism in finite 
automata. [Ch 1.2 in Sipser]
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Recall: Regular Languages

The language recognized by a finite
automaton M is denoted by L(M).

A regular language is a language 
for which there exists a recognizing
finite automaton.
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Recall: Two DFA Questions

Given the description of a finite 
automaton M = (Q,,,q,F), what is 
the language L(M) that it recognizes?

In general, what kind of languages 
can be recognized by finite automata?
(What are the regular languages?)
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Complement of a regular language
• Swap the accepting and non-accept 

states of M to get M’. 

• The complement of a regular language 
is regular.
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Terminology:  closure
• A set is defined to be closed under an 

operation if that operation on members 
of the set always produces a member of 
the same set. (adapted from wikipedia)

E.g.: 
• The integers are closed under addition, multiplication.
• The integers are not closed under division
• Σ* is closed under concatenation

• A set can be defined by closure -- Σ* is called the 
(Kleene) closure of Σ under concatenation.
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Terminology: Regular Operations

Pages 44-47 (Sipser)
The regular operations are:

1. Union
2. Concatenation
3. Star (Kleene Closure): For a language A,

A* = {w1w2w3…wk| k  0, and each wi A}
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Closure Properties
• Set of regular languages is closed 

under
– Union
– Concatenation
– Star (Kleene Closure)
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Union of Two Languages

Theorem 1.12: If A1 and A2 are regular 
languages, then so is A1  A2.
(The regular languages are ‘closed’ under
the union operation.)

Proof idea: A1 and A2 are regular, hence there are 
two DFA M1 and M2, with A1=L(M1) and A2=L(M2).
Out of these two DFA, we will make a third 
automaton M3 such that L(M3) = A1  A2.
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How do we combine DFA?
Q: Can we design a DFA that somehow 

``simulates’’ them both and accepts 
when at least one of them accepts?

Ans: Yes, through a clever construction. 
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Proof Union-Theorem (1)
M1=(Q1,,1,q1,F1) and M2=(Q2,,2,q2,F2)

Define M3 = (Q3,,3,q3,F3) by:
• Q3 = Q1Q2 = {(r1,r2) | r1Q1 and r2Q2}

• 3((r1,r2),a) = (1(r1,a), 2(r2,a))

• q3 = (q1,q2)

• F3 = {(r1,r2) | r1F1 or r2F2}



9/20/2012 CSE 2001, Fall 2012 12

Proof Union-Theorem (2)

The automaton M3 = (Q3,,3,q3,F3) runs M1
and M2 in ‘parallel’ on a string w.

In the end, the final state (r1,r2) ‘knows’
if wL1 (via r1F1?) and if wL2 (via r2F2?)

The accepting states F3 of M3 are such that
wL(M3) if and only if wL1 or wL2, for:
F3 = {(r1,r2) | r1F1 or r2F2}.
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Concatenation of L1 and L2

Definition: L1• L2 = { xy | xL1 and yL2 }

Example: {a,b} • {0,11} = {a0,a11,b0,b11}

Theorem 1.13: If L1 and L2 are regular 
languages, then so is L1•L2.
(The regular languages are ‘closed’ under
concatenation.)
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Proving Concatenation Thm.

Consider the concatenation:
{1,01,11,001,011,…} • {0,000,00000,…}
(That is: the bit strings that end with a “1”,
followed by an odd number of 0’s.)

Problem is: given a string w, how does 
the automaton know where the L1 part
stops and the L2 substring starts?

We need an M with ‘lucky guesses’.
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Nondeterminism
Nondeterministic machines are capable 
of being lucky, no matter how small the 
probability.

A nondeterministic finite automaton
has transition rules/possibilities like

q1 q2


q1

q21

q31



9/20/2012 CSE 2001, Fall 2012 16

A Nondeterministic Automaton 

q1 q2 q3

1 0, 

0,1

This automaton accepts  “0110”, because 
there is a possible path that leads to an
accepting state, namely:
q1  q1  q2  q3  q4  q4

q4

1

0,1
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A Nondeterministic Automaton 

q1 q2 q3

1 0, 

0,1

The string 1 gets rejected: on “1” the 
automaton can only reach: {q1,q2,q3}.

q4

1

0,1
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Nondeterminism ~ Parallelism
For any (sub)string w, the nondeterministic
automaton can be in a set of possible states.

If the final set contains an accepting state,
then the automaton accepts the string.

“The automaton processes the input in a
parallel fashion.  Its computational path
is no longer a line, but a tree.” (Fig. 1.28)
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Are NFA more powerful than 
DFA? 

• NFA can solve every problem that DFA 
can (DFA are also NFA)

• Need proof
• Let us define NFA formally
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Nondeterministic FA (def.)
• A nondeterministic finite automaton 

(NFA) M is defined by a 5-tuple 
M=(Q,,,q0,F), with

– Q: finite set of states
–: finite alphabet,  =  U {}
–: transition function :QP (Q)
– q0Q: start state
– FQ: set of accepting states
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Nondeterministic :QP (Q)

The function :QP (Q) is the crucial 
difference.  It means: 
“When reading symbol “a” while in state q,
one can go to one of the states in (q,a)Q.”

The  in  = {} takes care of the 
empty string transitions.
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Recognizing Languages (def)
A nondeterministic FA M = (Q,,,q,F) accepts 
a string w = w1…wn if and only if we can rewrite 
w as y1…ym with yi and there is a sequence 
r0…rm of states in Q such that:

1)  r0=q0

2) ri+1  (ri,yi+1) for all i=0,…,m–1

3)  rm  F
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NFA drawing conventions
• Not all transitions are labeled
• Unlabeled transitions are assumed to 

go to a reject state from which the 
automaton cannot escape
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NFA examples
= {0,1}
1. Strings ending in 01
2. String containing 01

= {a,b,c}
1. Strings ending in ab, bc, ca
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Closure under regular operations
Union (new proof):
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Closure under regular operations
Concatenation:
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Closure under regular operations
Star:
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Incorrect reasoning about RL
• Since L1 = {w| w=an, n  N}, 

L2 = {w| w = bn, n  N} are regular,
therefore L1  L2 = {w| w=an bn, n  N} is 
regular

• If L1 is a regular language, then
L2 = {wR| w  L1} is regular, and
Therefore L1  L2 = {w wR | w  L1} is 
regular



9/20/2012 CSE 2001, Fall 2012 29

Exercises
[Sipser 1.7 in 3rd Ed, 1.5 in 2nd Ed]: Give NFAs

with the specified number of states that 
recognize the following languages over the 
alphabet  ={0,1}:

1. { w | w ends with 00}, three states
2. {0}; two states
3. { w | w contains even number of 0s, or exactly 

two 1s}, six states 
4. {0n | nN }, one state
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Exercises - 2

Prove the following result: 
“If L1 and L2 are regular languages, then

is a regular language too.”

Describe the language that is recognized 
by this nondeterministic automaton:

21 LL 

q1 q2 q3

1 0, 
1

q4

1

0,1




