CSE 2001: Introduction to Theory of Computation Fall 2012

Suprakash Datta

datta@cse.yorku.ca

Office: CSEB 3043 Phone: 416-736-2100 ext 77875

Course page: http://www.cs.yorku.ca/course/2001

9/20/2012

Last class: examples of DFA

Today :

- Study limitations of DFA
- Introduce nondeterminism in finite automata. [Ch 1.2 in Sipser]

Recall: Regular Languages

The language recognized by a finite automaton M is denoted by L(M).

A <u>regular language</u> is a language for which there exists a recognizing finite automaton.

Recall: Two DFA Questions

Given the description of a finite automaton $\mathbf{M} = (\mathbf{Q}, \Sigma, \delta, \mathbf{q}, \mathbf{F})$, what is the language $\mathbf{L}(\mathbf{M})$ that it recognizes?

In general, what kind of languages can be recognized by finite automata? (What are the regular languages?)

Complement of a regular language

• Swap the accepting and non-accept states of M to get M'.

• The complement of a regular language is regular.

Terminology: closure

 A set is defined to be closed under an operation if that operation on members of the set always produces a member of the same set. (adapted from wikipedia)

E.g.:

- The integers are closed under addition, multiplication.
- The integers are not closed under division
- Σ^* is closed under concatenation
- A set can be defined by closure -- Σ* is called the (Kleene) closure of Σ under concatenation.

Terminology: Regular Operations

Pages 44-47 (Sipser)

The regular operations are:

- 1. Union
- 2. Concatenation
- 3. Star (Kleene Closure): For a language A,

 $A^* = \{w_1w_2w_3...w_k | \ k \ge 0, \text{ and each } w_i \in A\}$

Closure Properties

- Set of regular languages is closed under
 - Union
 - Concatenation
 - Star (Kleene Closure)

Union of Two Languages

<u>Theorem 1.12</u>: If A_1 and A_2 are regular languages, then so is $A_1 \cup A_2$. (The regular languages are 'closed' under the union operation.)

<u>Proof idea</u>: A_1 and A_2 are regular, hence there are two DFA M₁ and M₂, with $A_1=L(M_1)$ and $A_2=L(M_2)$. Out of these two DFA, we will make a third automaton M₃ such that $L(M_3) = A_1 \cup A_2$.

9/20/2012

How do we combine DFA?

Q: Can we design a DFA that somehow ``simulates'' them both and accepts when at least one of them accepts?

Ans: Yes, through a clever construction.

Proof Union-Theorem (1)

 $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \text{ and } M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$

Define $M_3 = (Q_3, \Sigma, \delta_3, q_3, F_3)$ by: • $Q_3 = Q_1 \times Q_2 = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2\}$

- $\delta_3((\mathbf{r}_1,\mathbf{r}_2),\mathbf{a}) = (\delta_1(\mathbf{r}_1,\mathbf{a}), \, \delta_2(\mathbf{r}_2,\mathbf{a}))$
- $q_3 = (q_1, q_2)$

•
$$F_3 = \{(r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2\}$$

Proof Union-Theorem (2)

The automaton $M_3 = (Q_3, \Sigma, \delta_3, q_3, F_3)$ runs M_1 and M_2 in 'parallel' on a string w.

In the end, the final state (r_1, r_2) 'knows' if $w \in L_1$ (via $r_1 \in F_1$?) and if $w \in L_2$ (via $r_2 \in F_2$?)

The accepting states F_3 of M_3 are such that $w \in L(M_3)$ if and only if $w \in L_1$ or $w \in L_2$, for: $F_3 = \{(r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2\}.$

9/20/2012

Concatenation of L₁ and L₂

Definition: $L_1 \bullet L_2 = \{ xy \mid x \in L_1 \text{ and } y \in L_2 \}$

Example: $\{a,b\} \bullet \{0,11\} = \{a0,a11,b0,b11\}$

<u>Theorem 1.13</u>: If L_1 and L_2 are regular languages, then so is $L_1 \bullet L_2$. (The regular languages are 'closed' under concatenation.)

Proving Concatenation Thm.

Consider the concatenation: {1,01,11,001,011,...} • {0,000,00000,...} (That is: the bit strings that end with a "1", followed by an odd number of 0's.)

Problem is: given a string w, how does the automaton know where the L_1 part stops and the L_2 substring starts?

We need an M with 'lucky guesses'.

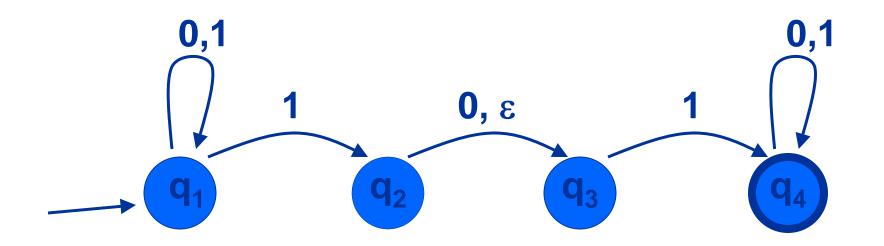
9/20/2012

Nondeterminism

Nondeterministic machines are capable of being lucky, no matter how small the probability.

A nondeterministic finite automaton has transition rules/possibilities like

A Nondeterministic Automaton

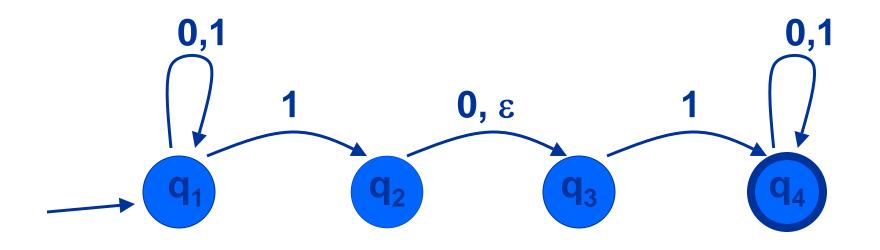


This automaton accepts "0110", because there is a possible path that leads to an accepting state, namely:

 $q_1 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow q_4 \rightarrow q_4$

9/20/2012

A Nondeterministic Automaton



The string 1 gets rejected: on "1" the automaton can only reach: $\{q_1, q_2, q_3\}$.

CSE 2001, Fall 2012

9/20/2012

Nondeterminism ~ Parallelism

For any (sub)string w, the nondeterministic automaton can be in a set of possible states.

If the final set contains an accepting state, then the automaton accepts the string.

"The automaton processes the input in a parallel fashion. Its computational path is no longer a line, but a tree." (Fig. 1.28)

Are NFA more powerful than DFA?

- NFA can solve every problem that DFA can (DFA are also NFA)
- Need proof
- Let us define NFA formally

Nondeterministic FA (def.)

- A nondeterministic finite automaton (NFA) M is defined by a 5-tuple M=(Q,Σ,δ,q₀,F), with
 - -Q: finite set of states
 - $-\Sigma$: finite alphabet, $\Sigma_{\epsilon} = \Sigma U \{\epsilon\}$
 - $-\delta$: transition function δ :Q× $\Sigma_{\varepsilon} \rightarrow \mathcal{P}(Q)$
 - $-q_0 \in Q$: start state
 - $-F \subseteq Q$: set of accepting states

Nondeterministic $\delta: \mathbf{Q} \times \Sigma_{\varepsilon} \rightarrow \mathcal{P}(\mathbf{Q})$

The function $\delta: \mathbb{Q} \times \Sigma_{\varepsilon} \to \mathcal{P}(\mathbb{Q})$ is the crucial difference. It means: "When reading symbol "a" while in state q, one can go to one of the states in $\delta(q,a) \subseteq \mathbb{Q}$."

The ε in $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$ takes care of the empty string transitions.

Recognizing Languages (def)

A nondeterministic FA **M** = (Q, Σ , δ ,q,F) <u>accepts</u> a string **w** = w₁...w_n if and only if we can rewrite w as y₁...y_m with y_i $\in \Sigma_{\varepsilon}$ and there is a sequence r₀...r_m of states in Q such that:

1) $r_0 = q_0$

2) $r_{i+1} \in \delta(r_i, y_{i+1})$ for all i=0,...,m-1

3) $r_m \in F$

NFA drawing conventions

- Not all transitions are labeled
- Unlabeled transitions are assumed to go to a reject state from which the automaton cannot escape

NFA examples

Σ= {0,1}
1. Strings ending in 01
2. String containing 01

Σ= {a,b,c}1. Strings ending in ab, bc, ca

Closure under regular operations Union (new proof):

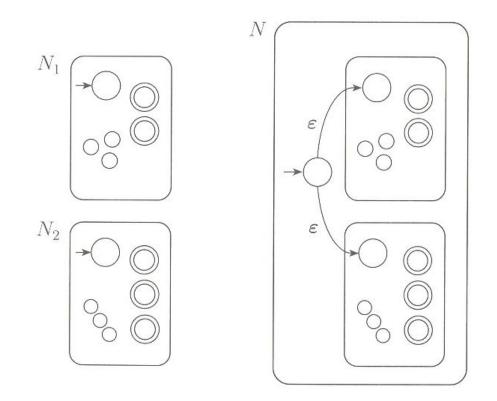
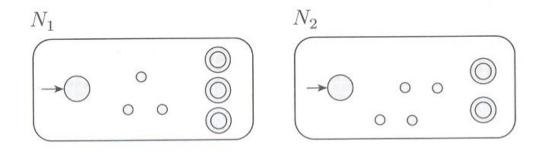


FIGURE 1.46 Construction of an NFA N to recognize $A_1 \cup A_2$

9/20/2012

Closure under regular operations Concatenation:



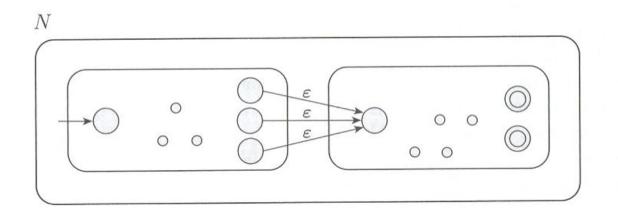


FIGURE **1.48** Construction of N to recognize $A_1 \circ A_2$

9/20/2012

Closure under regular operations Star:

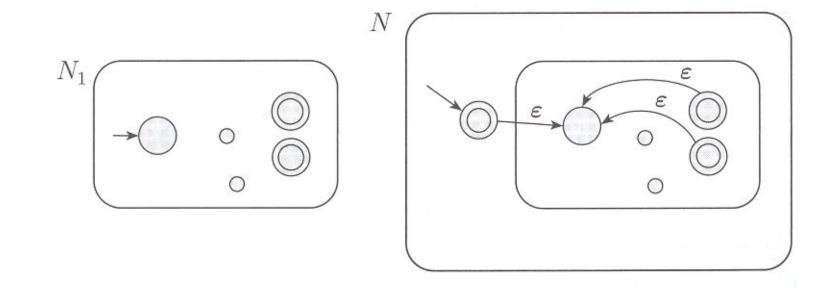


FIGURE 1.50 Construction of N to recognize A^*

9/20/2012

CSE 2001, Fall 2012

27

Incorrect reasoning about RL

• Since $L_1 = \{w | w=a^n, n \in N\}$,

 $\begin{array}{l} L_2=\{w|\;w=b^n,\,n\in N\} \text{ are regular},\\ \text{therefore } L_1\bullet L_2=\{w|\;w=a^n\,b^n,\,n\in N\} \text{ is}\\ \text{regular} \end{array}$

• If L₁ is a regular language, then L₂ = {w^R | w \in L₁} is regular, and Therefore L₁ • L₂ = {w w^R | w \in L₁} is regular

Exercises

- [Sipser 1.7 in 3rd Ed, 1.5 in 2nd Ed]: Give NFAs with the specified number of states that recognize the following languages over the alphabet $\Sigma = \{0,1\}$:
- 1. { w | w ends with 00}, three states
- 2. {0}; two states
- 3. { w | w contains even number of 0s, or exactly two 1s}, six states
- 4. $\{0^n \mid n \in N\}$, one state

Exercises - 2

Prove the following result: "If L_1 and L_2 are regular languages, then $L_1 \cap \overline{L}_2$ is a regular language too."

Describe the language that is recognized by this nondeterministic automaton:

