CSE 2001: Introduction to Theory of Computation Fall 2012

Suprakash Datta

datta@cse.yorku.ca

Office: CSEB 3043 Phone: 416-736-2100 ext 77875

Course page: http://www.cs.yorku.ca/course/2001

9/6/2012

CSE 2001, Fall 2012

Administrivia

Lectures: Tue, Thu 4 - 5:30 pm (CLH J)

Office hours: Tues 5:30-7 pm, Wed 4-6 pm (CSEB 3043), or by appointment.

TA: Paria Mehrani, will lead problemsolving sessions. Another grader will only grade some homework, no office hours.

http://www.cs.yorku.ca/course/2001

Webpage: All announcements/handouts will be published on the webpage -- check often for updates)

Textbook:

Michael Sipser. Introduction to the Theory of Computation, Third Edition. Cengage Learning, 2013.

Administrivia – contd.

<u>Grading:</u> 2 Midterms : 20% + 20% (in class) Final: 40% Assignments (4 sets): 20%

Grades will be on ePost (linked from the web page)

Notes:

- 1. All assignments are individual.
- 2. There MAY be 1-2 extra credit quizzes. These will be announced beforehand.

Administrivia – contd.

Plagiarism: Will be dealt with very strictly. Read the detailed policies on the webpage.

Handouts (including solutions): in /cs/course/2001

Slides: Will usually be on the web the morning of the class. The slides are for MY convenience and for helping you recollect the material covered. They are not a substitute for, or a comprehensive summary of, the textbook.

Resources: We will follow the textbook closely.

There are more resources than you can possibly read – including books, lecture slides and notes.

CSE 2001, Fall 2012

Recommended strategy

- This is an applied Mathematics course -- practice instead of reading.
- Try to get as much as possible from the lectures.
- If you need help, get in touch with me early.
- If at all possible, try to come to the class with a fresh mind.
- Keep the big picture in mind. ALWAYS.

Course objectives - 1

Reasoning about computation

- Different computation models
 - Finite Automata
 - Pushdown Automata
 - Turing Machines
- What these models can and cannot do

Course objectives - 2

- What does it mean to say "there does not exist an algorithm for this problem"?
- Reason about the hardness of problems
- Eventually, build up a hierarchy of problems based on their hardness.

Course objectives - 3

- We are concerned with solvability, NOT efficiency.
- CSE 3101 (Design and Analysis of Algorithms) efficiency issues.

Reasoning about Computation

Computational problems may be

- Solvable, quickly
- Solvable in principle, but takes an infeasible amount of time (e.g. thousands of years on the fastest computers available)
- (provably) not solvable

Theory of Computation: parts

- Automata Theory (CSE 2001)
- Complexity Theory (CSE 3101, 4115)
- Computability Theory (CSE 2001, 4101)

Reasoning about Computation - 2

- Need formal reasoning to make credible conclusions
- Mathematics is the language developed for formal reasoning
- As far as possible, we want our reasoning to be intuitive

Next:

Ch. 0:Set notation and languages

- •Sets and sequences
- •Tuples
- •Functions and relations
- •Graphs
- •Boolean logic: $\lor \land \neg \Leftrightarrow \Rightarrow$
- •Review of proof techniques
 - •Construction, Contradiction, Induction...

Some of these slides are adapted from Wim van Dam's slides (<u>www.cs.berkeley.edu/~vandam/CS172/</u>) and from Nathaly Verwaal (http://cpsc.ucalgary.ca/~verwaal/313/F2005)

9/6/2012

CSE 2001, Fall 2012

Topics you should know:

- Elementary set theory
- Elementary logic
- Functions
- Graphs

Set Theory review

- Definition
- Notation: $A = \{ x \mid x \in N , x \mod 3 = 1 \}$ $N = \{1, 2, 3, ... \}$
- Union: A∪B
- Intersection: A∩B
- Complement: A
- Cardinality: |A|
- Cartesian Product:
 A×B = { (x,y) | x∈A and y∈B}

Some Examples

 $\begin{array}{l} L_{<6} = \{ \ x \ | \ x \in {\hbox{\bf N}} \ , \ x{<}6 \ \} \\ L_{prime} = \{ x \ | \ x \in {\hbox{\bf N}} \ , \ x \ is \ prime \} \\ L_{<6} \cap L_{prime} = \{ 2,3,5 \} \end{array}$

$$\Sigma = \{0,1\}$$

$$\Sigma \times \Sigma = \{(0,0), (0,1), (1,0), (1,1)\}$$

Formal: $A \cap B = \{ x \mid x \in A \text{ and } x \in B \}$

9/6/2012

CSE 2001, Fall 2012

Power set

"Set of all subsets" Formal: $\mathcal{P}(A) = \{ S \mid S \subseteq A \}$

Example: $A = \{x, y\}$ $\mathcal{P}(A) = \{ \{\}, \{x\}, \{y\}, \{x, y\} \}$

Note the different sizes: for finite sets $|\mathcal{P}(A)| = 2^{|A|}$ $|A \times A| = |A|^2$

Graphs: review

- Nodes, edges, weights
- Undirected, directed
- Cycles, trees
- Connected

Logic: review

Boolean logic: $\lor \land \neg$ Quantifiers: \forall, \exists

> statement: Suppose $x \in N, y \in N$. Then $\forall x \exists y \ y > x$

for any integer, there exists a larger integer

- ⇒: a ⇒ b "is the same as" (is logically equivalent to) \neg a ∨ b
- \Leftrightarrow : a \Leftrightarrow b is logically equivalent to

$$(a \Rightarrow b) \land (b \Rightarrow a)$$

Logic: review - 2

Contrapositive and converse: the converse of $a \Rightarrow b$ is $b \Rightarrow a$ the contrapositive of $a \Rightarrow b$ is $\neg b \Rightarrow \neg a$

Any statement is logically equivalent to its contrapositive, but not to its converse.

Logic: review - 3

Negation of statements

 $\neg (\forall x \exists y \ y > x) ``=`` \exists x \forall y \ y \le x$

(LHS: negation of "for any integer, there exists a larger integer", RHS: there exists a largest integer)

TRY: $\neg(a \Rightarrow b) = ?$

Logic: review - 4

Understand quantifiers

- $\forall x \exists y P(y, x) \text{ is not the same as}$
- $\exists y \forall x P(y, x)$
- Consider P(y,x): $x \le y$.
- $\forall x \exists y x \leq y \text{ is TRUE over } N \text{ (set } y = x + 1)$
- $\exists y \ \forall x \ x \leq y \ is \ FALSE \ over \ N \ (there \ is \ no \ largest \ number \ in \ N)$

Functions: review

- f: $A \rightarrow C$
- f: A x B \rightarrow C

Examples:

- f: $\mathbf{N} \rightarrow \mathbf{N}$, f(x) = 2x
- f: $N \times N \rightarrow N$, f(x,y) = x + y
- f: A x B \rightarrow A, A = {a,b}, B = {0,1}

	0	1
а	а	b
b	b	а

CSE 2001, Fall 2012

Functions: an alternate view

Functions as lists of pairs or k-tuples

- E.g. f(x) = 2x
- {(1,2), (2,4), (3,6),....}
- For the function below: {(a,0,a),(a,1,b),(b,0,b),(b,1,a)}

Next: Terminology

- Alphabets
- Strings
- Languages
- Problems, decision problems

Alphabets

- An alphabet is a finite non-empty set.
- An alphabet is generally denoted by the symbols Σ , Γ .
- Elements of Σ, called symbols, are often denoted by lowercase letters, e.g., a,b,x,y,...

Strings (or words)

- Defined over an alphabet $\boldsymbol{\Sigma}$
- Is a finite sequence of symbols from $\boldsymbol{\Sigma}$
- Length of string w (|w|) length of sequence
- ϵ the empty string is the unique string with zero length.
- Concatenation of w_1 and w_2 copy of w_1 followed by copy of w_2
- x^k = x x x x x x ...x(k times)
- w^R reversed string; e.g. if w = abcd then w^R = dcba.
- Lexicographic ordering : definition

Languages

- A language over Σ is a set of strings over Σ
- $\boldsymbol{\Sigma}^*$ is the set of all strings over $\boldsymbol{\Sigma}$
- A language L over Σ is a subset of Σ^* (L $\subseteq \Sigma^*$)
- Typical examples:
 - Σ ={0,1}, the possible words over Σ are the finite bit strings.
 - L = { x | x is a bit string with two zeros }
 - L = { $a^n b^n \mid n \in \mathbf{N}$ }
 - L = $\{1^n | n \text{ is prime}\}$

Concatenation of languages

Concatenation of two langauges: $A \bullet B = \{ xy \mid x \in A \text{ and } y \in B \}$

Caveat: Do not confuse the concatenation of languages with the Cartesian product of sets.

For example, let $A = \{0,00\}$ then

A•A = { 00, 000, 0000 } with |A•A|=3,

 $A \times A = \{ (0,0), (0,00), (00,0), (00,00) \}$ with $|A \times A|=4$

CSE 2001, Fall 2012

Problems and Languages

- Problem: defined using input and output
 - compute the shortest path in a graph
 - sorting a list of numbers
 - finding the mean of a set of numbers.
- Decision Problem: output is yes/no (or 1/0)
- Language: set of all inputs where output is yes

Historical perspective

- Many models of computation from different fields
 - Mathematical logic
 - Linguistics
 - Theory of Computation

Formal language theory

Input/output vs decision problems

- Input/output problem: "find the mean of n integers"
- Decision Problem: output is either yes or no
- "Is the mean of the n numbers equal to k?"

You can solve the decision problem if and only if you can solve the input/output problem.

Example – Code Reachability

- Code Reachability Problem:
 - Input: Java computer code
 - Output: Lines of unreachable code.
- Code Reachability Decision Problem:
 - Input: Java computer code and line number
 - Output: Yes, if the line is reachable for some input, no otherwise.
- Code Reachability Language:
 - Set of strings that denote Java code and reachable line.

Example – String Length

- Decision Problem:
 - Input: String w
 - Output: Yes, if w is even
- Language:
 - Set of all strings of even length.

Relationship to functions

- Use the set of k-tuples view of functions from before.
- A function is a set of k-tuples (words) and therefore a language.
- Shortest paths in graphs the set of shortest paths is a set of paths (words) and therefore a language.

Recognizing languages

- Automata/Machines accept languages.
- Also called "recognizing languages".
- The power of a computing model is related to, and described by, the languages it accepts/recognizes.
- Tool for studying different models

Recognizing Languages - 2

- Let L be a language $\subseteq S$
- a machine M recognizes L if

CSE 2001, Fall 2012

Recognizing languages - 3

• Minimal spanning tree problem solver

CSE 2001, Fall 2012

Recognizing languages - 4

- Tools from language theory
- Expressibility of languages
- Fascinating relationship between the complexity of problems and power of languages

Proofs

- What is a proof?
- Does a proof need mathematical symbols?
- What makes a proof incorrect?
- How does one come up with a proof?

Proof techniques (Sipser 0.4)

- Proof by cases.
- Proof by contrapositive
- Proof by contradiction
- Proof by construction
- Proof by induction
- Others

Proof by cases

If n is an integer, then n(n+1)/2 is an integer

Case 1: n is even.

or n = 2a, for some integer a So $n(n+1)/2 = 2a^{*}(n+1)/2 = a^{*}(n+1)$, which is an integer.

 Case 2: n is odd. n+1 is even, or n+1 = 2a, for an integer a So $n(n+1)/2 = n^2a/2 = n^a$, which is an integer. CSE 2001, Fall 2012 9/6/2012 41

Proof by contrapositive - 1

- If x^2 is even, then x is even
- Proof 1 (DIRECT):
 x² = x*x = 2a
 So 2 divides x.
- •Proof 2: prove the contrapositive! if x is odd, then x^2 is odd. x = 2b + 1. So $x^2 = 4b^2 + 4b + 1$ (odd)

Proof by contrapositive - 2

If $\sqrt{(pq)} \neq (p+q)/2$, then $p \neq q$ Proof 1: By squaring and transposing $(p+q)^2 \neq 4pq$, or $p^2+q^2+2pq \neq 4pq$, or $p^2+q^2 - 2pq \neq 0$, or $(p-q)^2 \neq 0$, or $p-q \neq 0$, or $p \neq q$. Proof 2: prove the contrapositive! If p = q, then $\sqrt{(pq)} = (p+q)/2$ Easy: $\sqrt{(pq)} = \sqrt{(pp)} = \sqrt{(p^2)} = p = (p+p)/2 =$ (p+q)/2.CSE 2001, Fall 2012

Proof by contradiction

$\sqrt{2}$ is irrational

 Suppose √2 is rational. Then √2 = p/q, such that p, q have no common factors.
 Squaring and transposing,

 $p^2 = 2q^2$ (even number)

So, p is even (previous slide)

Or p = 2x for some integer x

So $4x^2 = 2q^2$ or $q^2 = 2x^2$

So, q is even (previous slide)

So, p,q are both even – they have a common factor of 2. CONTRADICTION.

So $\sqrt{2}$ is NOT rational. Q.E.D.

Proof by construction

There exists irrational b,c, such that b^c is rational

Consider $\sqrt{2^{\sqrt{2}}}$. Two cases are possible:

- Case 1: $\sqrt{2^{\sqrt{2}}}$ is rational DONE (b = c = $\sqrt{2}$).
- Case 2: $\sqrt{2^{\sqrt{2}}}$ is irrational Let $b = \sqrt{2^{\sqrt{2}}}$, $c = \sqrt{2}$. Then $b^c = (\sqrt{2^{\sqrt{2}}})^{\sqrt{2}} = (\sqrt{2})^{\sqrt{2^*\sqrt{2}}} = (\sqrt{2})^2 = 2$

Debug this "proof"

For each positive real number a, there exists a real number x such that $x^2 > a$

Proof: We know that 2a > aSo $(2a)^2 = 4a^2 > a$ So use x = 2a.

Proof by induction

- Format:
- Inductive hypothesis,
- •Base case,
- •Inductive step.

Proof by induction

Prove: For any $n \in \mathbf{N}$, n^3 -n is divisible by 3.

IH: P(n): For any $n \in \mathbf{N}$, f(n)=n³-n is divisible by 3. <u>Base case</u>: P(1) is true, because f(1)=0. Inductive step: Assume P(n) is true. Show P(n+1) is true. Observe that $f(n+1) - f(n) = 3(n^2 + n)$ So f(n+1) - f(n) is divisible by 3. Since P(n) is true, f(n) is divisible by 3. So f(n+1) is divisible by 3. Therefore, P(n+1) is true. Exercise: give a direct proof.

Next: Finite automata

Ch. 1: Deterministic finite automata (DFA)

Look ahead:

We will study languages recognized by finite automata.

9/6/2012

CSE 2001, Fall 2012