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Administrivia
Lectures: Tue, Thu 4 - 5:30 pm (CLH J)

Textbook:

Office hours: Tues 5:30-7 pm, Wed 4-6
pm (CSEB 3043), or by appointment.

TA: Paria Mehrani, will lead problem-
solving sessions. Another grader will only
grade some homework, no office hours.

MICHAEL SIPSER

http://www.cs.yorku.ca/course/2001

Michael Sipser.

Webpage: All announcements/handouts Introduction to the
will be published on the webpage -- Theory of Computation,
check often for updates) Third Edition. Cengage

Learning, 2013.
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Administrivia — contd.

Grading:

2 Midterms : 20% + 20% (in class)
Final: 40%

Assignments (4 sets): 20%

Grades will be on ePost (linked from the web
page)

Notes:

1. All assignments are individual.
2. There MAY be 1-2 extra credit quizzes. These will be
announced beforehand.
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Administrivia — contd.

Plagiarism: Will be dealt with very strictly. Read the detailed
policies on the webpage.

Handouts (including solutions): in /cs/course/2001

Slides: Will usually be on the web the morning of the class.
The slides are for MY convenience and for helping you
recollect the material covered. They are not a substitute
for, or a comprehensive summary of, the textbook.

Resources: We will follow the textbook closely.

There are more resources than you can possibly read —
Including books, lecture slides and notes.
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Recommended strategy

e This is an applied Mathematics course --
practice instead of reading.

 Try to get as much as possible from the
ectures.

 |If you need help, get in touch with me eatrly.

 |f at all possible, try to come to the class with
a fresh mind.

o Keep the big picture in mind. ALWAYS.
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Course objectives - 1

Reasoning about computation

e Different computation models
— Finite Automata
— Pushdown Automata
— Turing Machines

 \WWhat these models can and cannot do
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Course objectives - 2

 \What does it mean to say “there does
not exist an algorithm for this problem”?

 Reason about the hardness of problems

e Eventually, build up a hierarchy of
problems based on their hardness.
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Course objectives - 3

* \We are concerned with solvability, NOT
efficiency.

« CSE 3101 (Design and Analysis of
Algorithms) efficiency Issues.
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Reasoning about Computation

Computational problems may be
e Solvable, quickly

e Solvable in principle, but takes an
Infeasible amount of time (e.g.
thousands of years on the fastest
computers available)

 (provably) not solvable
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Theory of Computation: parts
e Automata Theory (CSE 2001)

 Complexity Theory (CSE 3101, 4115)

e Computability Theory (CSE 2001, 4101)
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Reasoning about Computation - 2

 Need formal reasoning to make credible
conclusions

 Mathematics Is the language developed
for formal reasoning

e As far as possible, we want our
reasoning to be intuitive
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Next:

Ch. 0:Set notation and languages
«Sets and segquences
*Tuples
*Functions and relations
*Graphs
Boolean logic: v A = & =
*Review of proof techniques

eConstruction, Contradiction, Induction...

Some of these slides are adapted from Wim van Dam'’s slides
(www.cs.berkeley.edu/~vandam/CS172/) and from Nathaly Verwaal
(http://cpsc.ucalgary.ca/~verwaal/313/F2005)
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Topics you should know:

 Elementary set theory
 Elementary logic

* Functions

e Graphs
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Set Theory review

e Definition
 Notation: A={x|x e N, xmod 3 =1}

N={1,2,3,...}
e Union: AUB
 Intersection: AnB
e Complement: A
e Cardinality: |A]
e Cartesian Product:

AxB ={(X,y) | xeA and yeB}
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Some Examples

L c={X|Xe N, x<6}
= {X| X € N, x Is prime}
={2,3,5}

—prime
LML

prime

s ={0,1}
>x2= {(0,0), (0,1), (1,0), (1,1)}

Formal: AnB = { x| xeA and xeB}

9/6/2012 CSE 2001, Fall 2012
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Power set
“Set of all subsets”

Formal: P(A) =

{S|Sc A}

Example: A = {x,y}

PA)={1, X}

Y, XY )

Note the different sizes: for finite sets

PA)| =2
AxA| = |A

9/6/2012

Al

2

CSE 2001, Fall 2012

16



Graphs: review

 Nodes, edges, weights
e Undirected, directed

e Cycles, trees

e Connected

9/6/2012 CSE 2001, Fall 2012 17



Logic: review
Boolean logic: v A —
Quantifiers: V, 3
statement: Suppose x € N,y € N.
Then|vVx dy y > X

—. a = b “Is the same as” (is logically
equivalentto) —avb

<. a < bislogically equivalent to
(a=Db) A(b= a)
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Logic: review - 2
Contrapositive and converse:

the converseofa=Dbisb = a
the contrapositive ofa=bis—-b = —-a

Any statement Is logically equivalent to its
contrapositive, but not to its converse.
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Logic: review - 3
Negation of statements
—(VX3Jdyy>x) “="Ix Vyy <X

(LHS: negation of *
., RHS: there exists a largest integer)

TRY: —(a = b) = ?
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Logic: review - 4
Understand quantifiers
vx 3y P(y, X) Is not the same as
Jy VX P(y, X)
Consider P(y,x ): x <.
vVx3dy x<yis TRUE over N (sety = x + 1)

dy VX x <y Is FALSE over N (there is no
largest number in N)
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Functions: review

e A5 C
e FAXB—->C

Examples:

e . N —> N, f(X) = 2x

e NXN-—>N,f(x,y)=x+y

« AXxB—> A A={ab}, B={0,1}

01
alab
b/b a
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Functions: an alternate view

Functions as lists of pairs or k-tuples

e E.g. f(X) = 2X

e {(1,2), (2,4), (3,6),....}

e For the function below:
{(a,0,a),(a,1,b),(b,0,b),(b,1,a)}

1
b
a

o D
o v O

9/6/2012 CSE 2001, Fall 2012

23



Next: Terminology

* Alphabets

e Strings

e Languages

* Problems, decision problems

9/6/2012 CSE 2001, Fall 2012

24



Alphabets

* An alphabet is a finite non-empty set.

* An alphabet is generally denoted by the
symbols %, T".

 Elements of X, called symbols, are often
denoted by lowercase letters, e.g.,
a,b,x,y,..
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Strings (or words)

Defined over an alphabet X

s a finite sequence of symbols from X
_ength of string w (Jw|) — length of sequence
¢ — the empty string is the unique string with
zero length.

Concatenation of w, and w, — copy of w;
followed by copy of w,

XK =X XXX X ...X(ktimes)

WR - reversed string; e.g. if w = abcd then wR
= dcba.

Lexicographic ordering : definition
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Languages

A language over X Is a set of strings over X
>" is the set of all strings over X

A language L over X is a subset of " (L < ¥7)
Typical examples:

- 2={0,1}, the possible words over X are the
finite bit strings.

- L ={ x| xIs a bit string with two zeros }
-L={a™m"|ne N}

-L={1"| nis prime}
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Concatenation of languages

Concatenation of two langauges:
AeB ={xy|xeAandyeB }

Caveat: Do not confuse the concatenation of
languages with the Cartesian product of sets.

For example, let A = {0,00} then
A<A = { 00, 000, 0000 } with |A-A|=3,

AxA = { (0,0), (0,00), (00,0), (00,00)}
with [AxA|=4
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Problems and Languages

* Problem: defined using input and output
— compute the shortest path in a graph
— sorting a list of numbers
— finding the mean of a set of numbers.

e Decision Problem: output Is yes/no (or
1/0)

e Language: set of all inputs where output
IS yes
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Historical perspective

 Many models of computation from
different fields
— Mathematical logic
— Linguistics
— Theory of Computation

Formal language
theory
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Input/output vs decision
problems
Input/output problem: “find the mean of n
Integers”
Decision Problem: output is either yes or no
“Is the mean of the n numbers equal to k ?”

You can solve the decision problem if and
only if you can solve the input/output
problem.
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Example — Code Reachability

e Code Reachability Problem:
— Input: Java computer code
— Output: Lines of unreachable code.

 Code Reachabllity Decision Problem:
— Input: Java computer code and line number

— Output: Yes, if the line is reachable for some input,
no otherwise.

 Code Reachabllity Language:

— Set of strings that denote Java code and
reachable line.
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Example — String Length

e Decision Problem:
— Input: String w
— Qutput: Yes, If |w| Iis even
e Language:
— Set of all strings of even length.

9/6/2012 CSE 2001, Fall 2012

33



Relationship to functions

e Use the set of k-tuples view of functions
from before.

* A function is a set of k-tuples (words)
and therefore a language.

e Shortest paths in graphs — the set of
shortest paths Is a set of paths (words)
and therefore a language.
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Recognizing languages

o Automata/Machines accept languages.
* Also called “recognizing languages”.

 The power of a computing model Is
related to, and described by, the
languages it accepts/recognizes.

e Tool for studying different models

9/6/2012 CSE 2001, Fall 2012 35



Recognizing Languages - 2

e Let L be alanguage ¢ S

e a machine M recoqgnizes L If

Z“ accept”j if and only if xelL
xeS—s»
?re]_ect,’ j If and Only If XxgL
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Recognizing languages - 3

 Minimal spanning tree problem solver

cost
- Yes/no

tree
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Recognizing languages - 4

* Tools from language theory
o Expressibility of languages

e Fascinating relationship between the

complexity of problems and power of
languages

9/6/2012 CSE 2001, Fall 2012
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Proofs

 What is a proof?

* Does a proof need mathematical
symbols?

 \What makes a proof incorrect?
 How does one come up with a proof?
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Proof techniques (Sipser 0.4)

e Proof
e Proof
e Proof
e Proof
e Proof

Dy cases.
0y contrapositive
oy contradiction
Dy construction

oy Induction

e Others .....

9/6/2012
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Proof by cases

If n Is an integer, then n(n+1)/2 Is an integer
« Case 1: nis even.
or n = 2a, for some integer a
So n(n+1)/2 = 2a*(n+1)/2 = a*(n+1),
which Is an integer.

Case 2: nis odd.
n+1 Is even, or n+1 = 2a, for an integer a
So n(n+1)/2 = n*2a/2 = n*a,
which Is an integer.
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Proof by contrapositive - 1

If X2 Is even, then x is even
 Proof 1 (DIRECT):

X2 = X*x = 2a

So 2 divides X.

*Proof 2: prove the contrapositive!
if X is odd, then x?is odd.
X=2b+ 1. So x*=4b*+ 4b + 1 (odd)

9/6/2012 CSE 2001, Fall 2012
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Proof by contrapositive - 2

If V(pq) = (p+q)/2, then p = q
Proof 1: By squaring and transposing
(p+0q)? # 4pq, or
p2+02 +2pq # 4pq, or
p2+q? -2pq = 0, or
(p-g)2 # 0, or
P-g=0,0rp=qd.
Proof 2: prove the contrapositive!
If p = g, then V(pq) = (p+q)/2

Easy: V(pg) = V(pp) = V(p?) = p = (p+p)/2 =
(p+q)/2.
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Proof by contradiction

\2 is irrational
« Suppose 2 is rational. Then V2 = p/q,
such that p, g have no common factors.
Squaring and transposing,
p? = 202 (even number)
So, p is even (previous slide)
Or p = 2x for some integer X
S0 4x? = 2g2 or g% = 2x?
So, g is even (previous slide)

So, p,q are both even — they have a common
factor of 2. CONTRADICTION.

So V2 is NOT rational. Q.E.D.
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Proof by construction

There exists irrational b,c, such that b¢ iIs
rational

Consider V22, Two cases are possible:
e Case 1: V22 is rational —- DONE (b = c = V2).

e Case 2: V22 jsirrational — Let b = V22 ¢ = 2.
Then b¢ = (\2V2)¥2 = (42)¥212 = (2)2=2
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Debug this “proof”

For each positive real number a, there
exists a real number x such that x? >a

Proof: We know that 2a > a

So (2a)* =4a? > a
SO use X = 2a.

9/6/2012 CSE 2001, Fall 2012
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Proof by induction

Format:

Inductive hypothesis,
eBase case,
Inductive step.

9/6/2012 CSE 2001, Fall 2012
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Proof by induction

Prove: For any n € N, n3-n is divisible by 3.

IH: P(n): For any n € N, f(n)=n3-n is divisible by 3.
Base case: P(1) is true, because f(1)=0.

Inductive step:

Assume P(n) is true. Show P(n+1) Is true.
Observe that f(n+1) — f (n) = 3(n? + n)

So f(n+1) — f (n) Is divisible by 3.

Since P(n) Is true, f(n) Is divisible by 3.

So f(n+1) is divisible by 3.

Therefore, P(n+1) Is true.

Exercise: give a direct proof.
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Next: Finite automata

Ch. 1. Deterministic finite automata (DFA)

Look ahead:

We will study languages recognized by finite
automata.
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