
CSE 1710	

Lecture 21	
Net-‐‑Centric Programming, Part II	

Learning Outcomes!
–  understand net-centric functionality in terms of

client and server roles"
–  see how the Internet Protocol Suite is an example

of layered abstraction"
–  distinguish between the WWW and the Internet"
–  Understand what the URL class encapsulates"
–  Understand what the URLConnection

encapsulates"
–  programmatically get static content from a URL"

2	

Learning Outcomes!
–  Understand and describe the basics of the HTTP

protocol"
–  Use the URL and URLConnection classes to:"

•  to instantiate useful objects "
•  to retrieve content from web servers"

–  Use string processing to manipulate query strings"

–  Understand the concept of a class hierarchy"
•  run-time checking using instanceof"

–  Use the HttpURLConnection class to examine
the request and response messages"

3	

Part2"

Setting the stage…!
!
so you’ve sucessfully invoked L19_App1 and L19_App2!

4	

What do all protocols have in common?!

•  All protocols provide a means to establish a
connection to the remote object "

•  With Java SDK, the connection to a remote object is
abstracted away from its URL"
–  the connection is encapsulated by the service:
URLConnection!

–  in the generic case of any protocol, the connection is
encapsulated by URLConnection!

–  in the particular case of the HTTP protocol, the
connection is encapsulated by HttpURLConnection!

–  for any protocol, the particular method for establishing a
connection is: openConnection()!
" " ""

from this point forward, we will limit our
discussion to URLs using the http protocol!

5	

Recap!

•  URLs – a specification that basically tells you:"
–  “hey, here is this remote resource that you can access”

and "
–  “hey, here is the specific protocol that you can use to

access it”"
•  What are some examples of remote resources?"
•  What are some examples of protocols?!

6	

What do all protocols have in common?!

•  All protocols provides a means to establish a
connection to the remote object "

•  All protocols have a way to “open the connection” to
“get the remote object”!
–  Once a connection is open, we can obtain an input stream

from it"
•  The specifics of the “how” depends on the specific protocol"

–  This is encapsulated as an InputStream object"
–  Where else have we used an InputStream object?"

7	

Services we can use…!

URL url = new URL(theURL);
•  construct an object to encapsulate an URL"

This accessor will return a reference to a
URLConnection object:"

 url.openConnection();
"
Some URLConnections are specific to the HTTP
protocol (depends on the URL!!!)"

8	

The Basics of HTTP  
!
•  HTTP stands for Hypertext Transfer Protocol"
•  HTTP is used to transmit resources, not just files. "
•  A resource is some chunk of information "

–  Something that can be identified by a URL (it's the R in URL). "
–  Examples of resources: "

•  files"
•  a dynamically-generated query result"
•  the output of a CGI script"
•  a document that is available in several languages. "

9	

The Basics of HTTP  
"
•  HTTP uses a model in which there is a client and a server

role (the “client-server” model):"
–  An HTTP client opens a connection and sends a request message to

an HTTP server!
–  A HTTP server then returns a response message to the client,

usually containing the resource that was requested"
–  After issuing the response, the server closes the connection."

10	

The Basics of HTTP  
"
•  an HTTP transaction is defined as:"

–  a single request from a client and the corresponding response from
the server!

•  Transaction sequence: when a given pair of client and
server has several transactions, one after another"

•  Stateless:!
–  the transactions within a sequence are independent of one another"
–  no connection information is maintained between transactions"
–  there is no notion of “state” (e.g., the client doesn’t saves any info

about how fast the server responds, etc)"
–  thus, the transaction seqeunce is “stateless”"
–  this is what is meant by “http is a stateless protocol”!

11	

The Basics of HTTP  
!
•  There are two types of messages:"

–  request messages"
–  response messages"

•  Both kinds of messages consist of: "
1.  an initial line"
2.  zero or more header lines"

•  e.g., the “Date” field represents the date and time at which the message was
originated"

3.  a blank line"
4.  (optionally, but not necessarily) a message body (aka “payload”)"

•  e.g. a file, query data, or query output "

12	

Example – visit www.yorku.ca  
"
here is the request"

"
"
"
"
here is the response"

"

13	

initial line"

initial line"

header lines"

header lines"

blank line"

blank line"

the payload"

OK, to illustrate…!
!
Don’t freak out…"
"
We are going to look at the algorithm that a web server follows to serve up
content"
"
You don’t have to memorize this – it’s just to illustrate what is happening
behind the scenes"

14	

!Serving Content as per the HTTP Protocol 
1. "Listen on port 80  
2. "If and when an HTTP request arrives (“GET” or “POST”), start a  

"process to handle it (“fork”) 
3. "Extract the path/file from the URL  
4. "Check whether file exists 

" "If not, return status 404. 
5. "Check whether file is reachable & readable (file permissions?) 

" "If not, return status 403  
6. "Determine the content type (static vs dynamic) 
	Static Content"

7. Return with status 200 (OK)
and a type header."
8. Serve file as the payload."
9. Close HTTP session."

Or, on keep-alive, wait brief time for
another request."

Dynamic Content (CGI)"
7. Masquerade as file owner."
8. Check that file is executable by "
 owner."
 If not, return status 500."
9. Run the file and capture its output."
10. Check the validity of the output."
 Not valid? Return status 500."
 Valid? Return status 200 (OK), and the
output as the payload."
"
"

15	

Response Codes!
!
 100 series"
 Sessional update from server."
 200 series"
 Success!"
 300 series"
 Redirect."
 400 series"
 Client error."
 500 series"
 Server error."

16	

For full detail, you can look at the full specification at:!
http://kb.globalscape.com/KnowledgebaseArticle10141.aspx!

Revisit L19_App1
!
Review the statements in light of the HTTP protocol!
!

17	

Discussion about L19_App1
"
We see that L19_App1 effectively performed a single transaction"
How and Where?"
•  there was a request message – the openConnection() method causes the

instantiation of a URLConnection object"
–  the URLConnection object, upon instantiation, attempts to establish contact to the

server"
–  things could go wrong, for instance an java.net.UnknownHostException may be

thrown"
–  if the connection is established, then the URLConnection object will issue the request

message"
•  there was a response message"

–  the server will issue a response, which the URLConnection object will capture"
–  things could go wrong with the connection and an exception will be thrown"

How can we examine the specifics of the request and response messages?"
We can’t!! Inadequate services - this is why we need L19_App2

" 18	

"
We know the URL is HTTP, so…"
we can infer that the URL connection is actually a connection
established using HTTP"
"

Approach #1 (used with L19_App2): "
–  cast the object at run-time"
–  what could go wrong?!

19	

Review: the instanceof operator"
!
Recall sec 3.2.4 “Relational Operators” (p.110)"
< !<= !> !>= !== !!=!
!
There was also the following operator:"
instanceof!
!
boolean test = x instanceof C;!
the expression evaluates to true iff either:"
•  the object reference x references an instance of class C or "
•  the object reference x references an instance of a subclass of C"
!

20	

Another Approach"
"
Approach #1: "

–  L19_App2 is vulnerable because of the manual cast!
–  manual casts can potentially lead to exceptions!

•  e.g. if the connection object is not actually an http connection"

–  this example points out the difference between early
binding (p.103) and late binding (at run-time)"

"
"
Approach #2: "

–  see L21_App1"
–  cast the object at run-time, but do so only conditionally"

21	

Another Approach"
"

•  Now that we have a HttpURLConnection
we can access additional services"

•  The HttpURLConnection class offers the
following services:"

"
String : getRequestMethod()!
int : getResponseCode()!
String : getResponseMessage()!

22	

