
CSE  1710	

Lecture  19	
Net-‐‑Centric  Programming,  Part  I	

Learning Outcomes!
–  understand net-centric functionality in terms of 

client and server roles"
–  see how the Internet Protocol Suite is an example 

of layered abstraction"
–  distinguish between the WWW and the Internet"
–  Understand what the URL class encapsulates"
–  Understand what the URLConnection 

encapsulates"
–  programmatically get static content from a URL"

2	

Learning Outcomes!
–  Understand and describe the basics of the HTTP 

protocol"
–  Use the URL and URLConnection classes to:"

•  to instantiate useful objects  "
•  to retrieve content from web servers"

–  Use string processing to manipulate query strings"

–  Understand the concept of a class hierarchy"
•  run-time checking using instanceof"

–  Use the HttpURLConnection class to examine 
the request and response messages"

3	

Part2"

Thinking about Systems!
!
•  try to imagine contexts in which humans are interacting with 

a set of interrelated hardware and software components, in 
order to support some sort of large scale activity "

•  sample categories: "
–  operations control"
–  business management"
–  decision making"

•  who can think of specific examples?!
!

4	



Decision Theatres!
!

5	

Arizona  State  University  –  Pandemic  Planning  Exercise	

Command Centers!
!

6	

PACCAR  truck  parts  
supply  chain  logistics	

Real-time News Reporting!
!

7	

CNN  Election  Results  Reporting	

Data Sources and Data Sinks!
!
•  within a context in which there are interrelated components 

(humans, sw, hw), we can identify data sources and data 
sinks"

•  data source: a component that produces data"
•  data sink: a component that is capable of receiving data"

•  Discussion: what have we dealt with so far that has an 
essence of a data source and data sink?!

8	



Review: what does it mean for a  
method to block?  
!
•  when a method is invoked, each statement in the body of the 

method is invoked in sequence"
–  somewhere in the body of the method, a statement is waiting for 

“something” to happen "
–  until this “something” happens, the method blocks!

•  the complete invocation of the method depends on some 
outside event, which may or may not happen in a timely 
fashion "

Examples "
readLine() from Scanner!
getResponseCode() in HttpURLConnection!
! 9	

L20App1"

A crash course in the stock market!
"
A public company is a company that offers its stock/shares for sale to the 
general public, typically through a stock exchange. "
"
A public company is represented by a two- or three-character symbol e.g., 
“RY” for “Royal Bank of Canada”"
"
At any given point in time, a share has a selling price.  The price 
fluctuates second by second"
"
An investor makes money by “buying low, selling high”"
"

10	

The stock market for this course!
"
"
(We will use an adapted, simplified stock market for this module)"
"
“Abstract Stock Exchange (ASE)”"
"
http://www.cse.yorku.ca/~roumani/jba/ase/"
"
Provides info on three types of stocks:"
•  real stocks listed on the TSE, such as Royal Bank (RY)"
•  made-up dynamic stocks, such as .AA, .AB, … , .ZY, .ZZ  (all 26x26 

variants)"
–  the prices of dynamic stocks fluctuate"

•  made-up non-dynamic stocks, such as HR.A, …, HR.Z (26 variants)"

11	

Query Strings!
"
Let’s have a look at http://www.cse.yorku.ca/~roumani/jba/ase/"
"
This html code contains a form element."
The form gathers together elements into a meaningful whole."
The form elements can consist of any number of input elements: text fields, 
radio buttons, checkboxes.  In addition, the form elements typically consists 
of a “submit” button."
"
what happens when we press the form’s submit button?"
"
"

12	



Query Strings!
"
When we invoke the form’s submit button, two things happen."
1) the following is composed:"
“http://www.cse.yorku.ca/~roumani/jba/ase/se.cgi”  
+ “?” + “hrss” + “=“ + “.NN”"
This evaluates to the following URL:"
http://www.cse.yorku.ca/~roumani/jba/ase/se.cgi?hrss=.NN!
"
2) The browser sends a “GET” request with the above-named URL"
"
Now the server needs to do something in response…"

13	

The Big(ger) Picture"
!
•  Hyptertext Transfer Protocol (HTTP) is the 

protocol used to access services concerning remote 
html files"

•  It is an application layer protocol"
•  HTTP is just one application layer protocol; there are 

many others:"
–  others include: ftp, smtp, ssh"

•  The application layer protocol is part of the 
Internet protocol suite (aka TCP/IP)"

14	

The Internet Protocol Suite (TCP/IP)"
–  Physical layer"
–  Data link layer"
–  Network layer"
–  Transport Layer"
–  Application Layer"

"
–  each layer has its own specific task to perform"
–  each task has its own set of issues, its own specific data 

unit"
–  the suite is a beautiful example of layered abstraction !

•  the use of several different layers is a strategy to confront 
complexity!

•  each layer encapsulates details within it"
•  each layer appears as a service to the layer above it"

15	

The Internet Protocol Suite (TCP/IP)"

•  imagine the task – “come up with a scheme to deal with all known 
and future data communications over the Internet”"

•  to illustrate the complexity of this, let’s look at each of the layers in 
summary…"

16	



The Internet Protocol Suite (TCP/IP)!
"

– Physical layer"
•  layer deals with: data bits"
•  task: how to encode 0 and 1 as an analog signal, how to transmit 

that one bit of data from a computer’s Network Interface Card 
(NIC) to the transmission medium (e.g., copper wire, the air, etc) "

•  protocols include: Ethernet, WiFi (aka IEEE 802.11), FireWire"

17	

The Internet Protocol Suite (TCP/IP)!
"

– Data link layer"
•  layer deals with: frames"
•  task: transmit one frame from one node to another on a LAN"
•  protocols include: Ethernet, WiFi (aka IEEE 802.11), others (not 

FireWire)"

18	

The Internet Protocol Suite (TCP/IP)!
"

– Network layer"
•  layer deals with: datagram (aka packet)"
•  task: transmit packets from one node to another on a LAN"
•  protocols include: IP, others"

19	

The Internet Protocol Suite (TCP/IP)!
"

– Transport Layer"
•  layer deals with: segments (to/from PORT numbers)"
•  task: transmit messages (segment) from a process running on a 

node in one LAN to one running on a node in another LAN"
•  protocols include: TCP, others"

20	



The Internet Protocol Suite (TCP/IP)!
"

– Application Layer"
•  layer deals with: messages"
•  task: provide services to user (in the form of message sending/

receiving)"
•  protocols include: HTTP, DNS, FTP, SSH, TELNET, SMTP, SIP, 

many others"

21	

!
!
Is the WWW the same as the Internet?"

22	

Why is the WWW ≠ The Internet?!
"

–  The Web is just a portion of the Internet"
•  It is the subset of the Internet Protocol Suite that is concerned with 

HTML pages"
•  There is more to the Internet than web pages"

–  bulk of Internet is used for peer-to-peer file sharing, not for client-server html 
sending/receiving"

–  The Internet predates the Web"
•  prior to TCP/IP (1970’s), ARPANET was created (1960’s)"
•  The Web went “live” on Aug 6, 1991 "

–  Web proposed two years earlier (by Tim Berners-Lee, who was working at 
CERN at the time)"

23	

The DNS Application Layer Service!
"
•  is a naming system that maps names to IP addresses "

–  for example, 130.63.92.30 is mapped to cse.yorku.ca!

•  why do we need/want this?"
–  IP addresses are numeric, not easy for people and applications to use"

•  difficult to remember, difficult to associate with meaning"
–  IP addresses can be reassigned or otherwise change"

!

24	



What is a Uniform Resource Locator (URL)?!

•  A URL represents a reference to an object (html file) that is 
remote (lives on the web-server “cse.yorku.ca”)"
–  e.g., http://cse.yorku.ca:80/course/1710/index.html!

•  The reference has the following components:"
–  the protocol: http!
–  a path: the location of the remote object on the host machine!

•  the remote object in this case is an html file!
•  the information needs to “live” somewhere on the host machine"

–  (optionally) a port: default for http is 80 !
•  used by the Transport Layer"

25	

More about a URL!

•  A URL indicates the location of information on the host 
machine!

•  This information can be static or dynamic"
–  static information:"

•  already composed, formatted as html, and stored in a file"
–  dynamic information:"

•  gets composed on-the-fly, gets formatted as html"
•  it exists only as a run-time entity"

26	

Another Example!
!
•  ftp://ctan.org!

–  the protocol: ftp!
–  a path: the location of the remote object!

•  still represents a reference to a remote object"
•  the object in this case is something other than html-formatted text"
•  the remote object here is a directory listing"

–  (optionally) a port: default port number for ftp is 21"
•  used by the Transport Layer"

27	

What services does the URL class provide?!

•  encapsulates:"
–  the protocol that is being used by the URL"
–  all the detail about the Internet Protocol Suite that is 

needed to actually obtain services according to that 
particular protocol"

–  All protocols provides a means to establish a connection 
to the remote object "

–  The connection to the remote object is abstracted away 
from the URL itself"

28	



The URL class!

•  The class provides a constructor that accepts a 
string representation of the URL"

•  The class URL is found in the java.net package"

URL url = new URL(“http://www.cse.yorku.ca/course/1710/index.html”); 

29	

What services does the URLConnection 
class provide?!

•  encapsulates:"
–  the connection to a remote object using the protocol 

specified by the URL"
–  for instance, it allows the client to open a connection, to 

request the remote object, and the to receive it using the 
specified protocol"

•  A URL object provides a service that provides a 
URLConnection object"

•  You don’t need to construct this object"
30	

What services does the 
HttpURLConnection class provide?!

•  encapsulates:"
–  the connection to a remote object using the http protocol"
–  for instance, it allows the client to open a connection, to 

request the remote object, and the to receive it"

31	

An Example!
!
!
L19_App1!
L19_App2  
!

32	


