
CSE 1710	

Lecture 17	
Iteration, Friendly Validation	

Today!
•  Basic Iteration"
•  Friendly Validation"

2"

Let’s talk about two forms of
iteration…!
•  one form: built upon a boolean condition"
•  another form: built around a collection!

3"

The “Collection” Form of
Iteration!
	
•  a collection is simply a bunch of elements, possibly in a

particular order, but not necessarily"
•  the elements must have a type (e.g., int, Pixel, etc)"
•  a set is a collection in which duplicates are not permitted"
•  a list is a collection in which the elements are ordered"
•  an array is a specific kind of list"
"
collection, set, list ": "abstractions, not specific to Java"
array " " ": "a Java programming element "
	
	
	

4"

The “Collection” Form of
Iteration!
!
for (Type-‐‑of-‐‑Element e : Identifier-‐‑of-‐‑Collection) {	

	// here is the body of the loop…	
	}	

}	
	
FOR EXAMPLE:"
	
Pixel[] thePixels = myPict.getPixels();	
// here we obtain an array"
	

5"

The “Collection” Form of
Iteration!
	
	
Pixel[] thePixels = myPict.getPixels();	
	
for (Pixel p : thePixels) {	

	// here is the body of the loop…	
}	
	

6"

The “Collection” Form of
Iteration!
	
	
…various in-class exercises…	
	
	

7"

The “Condition” Form of
Iteration!
	
for (; boolean expression ;) {	

	// here is the body of the loop…	
}	
	
	

8"

The “Condition” Form of
Iteration!
	
for (initial ; boolean expression ; bo>om) {	

	// here is the body of the loop…	
}	
	
	

9" Copyright
© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 5-10

5.2.1 Flow of Control

S

X

B2

B1

body

loop

I
t
e
r
a
t
i
o
n

 Copyright
© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 5-11

 Statement -S
 for (initial; condition; b ottom)
 {
 body;
 }
 Statement -X

 1. Start the for scope
 2. Execute initial
 3. If condition is false go to 9
 4. Start the body scope {
 5. Execute the body
 6. End the body scope }
 7. Execute bottom
 8. If condition is true go to 4
 9. End the for scope

for
S

false

X

initial
condition

{ body }

condition
bottom

true

Flow: Syntax :

Algorithm:

}

{

5.2.2 The for statement

 Copyright
© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 5-12

Example

final int MAX = 10;
final double SQUARE_ROOT = 0.5;
for (int i = 0; i < MAX; i = i + 1)
{
 double sqrt = Math.pow(i, SQUARE_ROOT);
 output.print(i);
 output.print("\t"); // tab
 output.println(sqrt);
}

 Copyright
© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 5-13

for (initial; condition; bottom)
for (int i = 0; i < MAX; i = i + 1)
{
 ...

}

int i;
for (; i < MAX; i = i + 1)
{
 ...

}
 Copyright

© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 5-14

for (initial; condition; bottom)

•  Can it be omitted?

•  Can it be set to the literal true?

•  What if it were false at the beginning?

•  Is it monitored throughout the body?

 Copyright
© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 5-15

for (initial; condition; bottom)

•  Can it be any statement?

•  Will the loop be infinite if it is omitted?

 Copyright
© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 5-16

Example
Write a fragment to output the exponents of
all powers of 2 that are smaller than a million.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Correct output:

 Copyright
© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 5-17

Example
Write a fragment to output the exponents of
all powers of 2 that are smaller than a million.

final int MILLION = 1000000;
for (int expo = 0; Math.pow(2, expo) < MILLION; expo++)
{
 output.print(expo);
 output.print(" ");
}
output.println();

As a second example, rewrite the fragment so
it only outputs the exponent of the greatest
power of 2 that is smaller than a million.

 Copyright
© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 5-18

Example
Rewrite the fragment so that it only outputs
the exponent of the greatest power of 2 that
is smaller than a million.

int expo = 0;
for (; Math.pow(2, expo) < MILLION; expo++)
{
}
output.println(expo - 1);

int expo = 0;
for (; Math.pow(2, expo) < MILLION; expo++);
output.println(expo - 1);

 Copyright
© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 5-19

5.2.3 Building the Loop

•  Sentinel-based example
Write a program that reads integers with a -1
sentinel and outputs their arithmetic mean.

•  Number statistics examples
Read numbers and determine their largest,
smallest, second-largest, …

 Copyright
© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 5-20

Write a prog that reads integers with a -1
sentinel and outputs their arithmetic mean.

for (?; not sentinel; ?)
{
 process the int
 read an int
}

Pseudo-code:

Sentinel-Based Looping

 Copyright
© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 5-21

Write a prog that reads integers with a -1
sentinel and outputs their arithmetic mean.

Pseudo-code:

Priming needed

for (?; not sentinel; ?)
{
 process the int
 read an int
}

Sentinel-Based Looping

 Copyright
© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 5-22

read an int
for (?; not sentinel; ?)
{
 process the int
 read an int
}

for (read an int; not sentinel; ?)
{
 process the int
 read an int
}

Sentinel-Based Looping

 Copyright
© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 5-23

for (read an int; not sentinel; ?)
{
 process the int
 read an int
}

for (read an int; not sentinel; read an int)
{
 process the int
}

Sentinel-Based Looping

 Copyright
© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 5-24

for (int n=input.nextInt(); not sentinel; n=input.nextInt())
{
 process the int
}

Sentinel-Based Looping

•  How do you count the entries?

•  How do you compute the mean?

•  Is a cast needed?

 Copyright
© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 5-25

Number Statistics

•  Finding the max entry

•  Using and challenging a candidate

•  Seeding the candidate

•  A multi-statement primer

 Copyright
© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 5-26

5.2.4 Nested Loops

•  Disjoint or fully nested

•  Nested structures imply nested scopes

for (int i = 0; i < max; i++)
{
 for (int j = 0; j < max; j++)
 {

 display i and j

 }
}

 Copyright
© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 5-27

5.3.1 Input Validation

•  Crash
Primitive (but better than no validation)

•  Print a message then end
Better. Requires an else statement to skip the
rest of the program

•  Print a message and allow retries
Best. Requires an if statement inside a loop

Three ways for handling bad input:	

 Copyright
© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 5-28

5.3.1 Input Validation

•  Crash
Primitive (but better than no validation)

•  Print a message then end
Better. Requires an else statement to skip the
rest of the program

•  Print a message and allow retries
Best. Requires an if statement inside a loop

Three ways for handling bad input:	
Exception

Free

