
CSE 1710	

Lecture 14, 15	
String Handling	

Strings!
We have covered three chunks of material:!
Week 1:!
•  “String Literals” pp. 22-23; Fig 1.12; PT 1.8!
Week 6:!
•  “The String Class” Section 6.1.1, pp. 219-220!
•  “The Masquerade and the + Operator” Section

6.1.2, pp. 221-224!

2!

Today!
•  “The String Class” Section 6.2 pp. 219-220!

3! Copyright
© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 6-4

• length()!
• charAt(int)!
• substring(int,int) (int)!

• indexOf(String) (String,int)!
• toString() and equals()!

• compareTo()!
• toUpperCase() and toLowerCase()!

String Methods!

REMEMBER!!
–  Any string is represented by an object!

–  A variable of type String is used to store the address
of the object.!

!
–  The String object has a state !
•  the state of an object is defined as the value of all

its attributes!
•  the only attribute of a String object is the attribute

that represents the sequence of characters!
•  the state of a String object basically boils down to

what is its sequence of characters?!

5	

REMEMBER!!
–  If the state of a String object is such that its

sequence has no characters at all, how do we
understand this?!
•  this is the empty string!
•  the string has length zero!
•  THIS IS NOT A NULL STRING!

•  What is this “null string”?!
•  technically speaking, “null string” is not really a correctly-

formed term, there is no such thing!
•  HOWEVER, it is often used to mean a string reference that

is set to null.!
•  This means that a String reference has been declared, but

that there is NO String object.!
6	

Can we modify the state of a String object?!
–  NO!
–  Once a string object is created, it cannot be changed.!

•  This is called immutability!
•  Strings are immutable

–  This is an unusual property – MOST other objects are
mutable!

!

7	

But what if we need to modify the state of a
String object?!

Instead of modifying the sequence, we just create new
strings that are modified verisons of the originals.!
–  It is fast and easy, thanks to the + operator!

–  Given this, is it correct to say that String has
mutators?!
•  not technically; they are actually generators of new modified

objects!
!

8	

int : length() method!

–  str1.length() returns an int!
•  tells us the number of characters in the object’s character sequence!

!

9	

char : charAt(int) method!

–  remember – the indexing of the character positions
starts at 0!!

–  str1.charAt(idx1) returns a char !
•  gives us the character at the specified index !
•  remember the first character of a string that is n characters long is at index 0

and the last character is at index n-1!

!

10	

String : substring(int, int) method!
String : substring(int) method!
!
what do each of these methods do?!
these methods must return a brand new string!

– substring(idx1,idx2) returns a String!
•  gives a subset of the character sequence from the start index

inclusive to the end index exclusive!

!
Can you live w/o substring(int) given the
overloaded (int,int)?!
!

11	

int : indexOf(char) method 
int : indexOf(char, int) method!
!
what do each of these methods do?!
!

–  str1.indexOf(str2) returns an int!
•  if str2 does not occur within str1, the method gives us the value -1!
•  if str2 does occur within str1, the method gives us a value which is the

index at which str2 occurs in str1’s character sequence!
–  if str2 occurs more than once within str1, the method gives us a value which is

the index at which str2 first occurs in str1’s character sequence!

–  str1.indexOf(str2, idx1) returns an int!
•  just like str1.indexOf(str2), but the methods looks at str1’s character

sequence only starting at index position idx1 onwards!

–  str1.substring(idx1) [REVISITED]!
•  just like str1.substring(idx1, idx2), with the assumption that idx2

is the length of str1!

!
12	

int : indexOf(char) method 
int : indexOf(char, int) method!
!
!
How would use use indexOf to detect all occurrences of a
substring?!
!

–  str1.substring(idx1) returns a String!
•  just like str1.substring(idx1, idx2), with the assumption that idx2

is the length of str1!
•  anything you do using str1.substring(idx1), you could also do with
str1.substring(idx1, idx2) !

•  CONVINCE YOURSELVES OF THIS!

!

13	

String : toString() method 
boolean : equals(String) method!
!
!
Do not underestimate what equals does!
!

–  str1.equals(str2) returns a boolean!
•  tells us whether str2 has the same state as str1 !
•  not whether str2 is the same object as str1!

!

!

14	

String matching/comparison (basic)!
Suppose c1, c2 are chars!
Suppose s1, s2 are Strings!

–  what does the equality boolean operator == tell us?!
•  boolean isMatch = c1==c2;!
•  boolean isMatch = s1==s2;  
!

–  what does .equals(String) tell us?!
•  boolean isMatch = s1.equals(s2);  
!

–  what does .compareTo(String) tell us?!
•  int differingIndexPos = s1.compareTo(s2);!

!

15	

int : compareTo(String) method!

!

16	

Elaboration of “compareTo(String)”!
 
(sort of) “tell me whether the passed string comes before
this string in the dictionary”!
“aardvark”.compareTo(“anvil”)!
•  anvil does not come before aardvark in the dictionary,

so the result is no (negative value)!
“anvil”.compareTo(“aardvark”)!
•  aardvark does come before anvil in the dictionary, so

the result is yes (positive value)!
 
(better) “tell me whether the passed string comes before this string in
the dictionary and, for the first character that is the determining
factor, what is the distance”!
•  the second character is the determining factor (‘a’ vs ‘n’, there is a

distance of 13 between them)!
!

17	

!
– str1.compareTo(str2) returns an int!

•  gives us an int that is a coded message!
–  0 if if str1 and str2 are equal!
–  polarity (the sign, +ve or –ve) tells us whether str2 comes

before str1 in the dictionary.!
–  dictionary uses lexicographic ordering!

•  if str1 and str2 are not equal, then the value is Unicode
difference of the first differing character!

•  if there is no index position at which they differ, then the
value is the length difference  
!

!

!
18	

String : toUpperCase() method 
String : toLowerCase() method!
!
!
these methods must return a brand new string!
!

– str1.toUpperCase() returns a String!
– str2.toLowerCase() returns a String!
!

•  these are NOT mutators!!!!
•  each returns a String obj, which is an entirely new object

that is modified version of str1 !
•  str1 is not changed at all (in fact, it cannot be changed,

since it is immutable)!

!
!

19	

Comparing strings: equals vs matches!
suppose we have two strings, str1 and str2!

–  str1.equals(str2) returns true iff !
•  str1 has the same state as str2!

–  str1.matches(str2) returns true iff !
•  str2 matches the pattern as stipulated by str2!

•  FOR NOW, WE WILL DO DEAD SIMPLE PATTERNS!

20	

“hello”.matches(“hello”)!

•  in the context of being a parameter to
matches, str2 is interpreted as a regular
expression (aka REGEX)!

•  the REGEX specifies 5 criteria:!

21	

“hello”.matches(“hello”)!

REGEX criteria ! Criterion satisfied?!
that the character h is in index position 0! yes!
that the character e is in index position 1! yes!
that the character l is in index position 2! yes!
that the character l is in index position 3! yes!
that the character o is in index position 4! yes!
(implied) no further characters in the sequence! yes!

Regular expressions: Simple classes!
–  a regular expression can also use special

characters and syntax to specify more patterns
more generally!

–  [abc] defines a simple class of characters !
!

22	

“hello”.matches(“[Hh]ello”)!

REGEX criteria ! str1 satisfies?!
the character H or h is in index position 0! yes!
the character e is in index position 1! yes!
the character l is in index position 2! yes!
the character l is in index position 3! yes!
the character o is in index position 4! yes!
no further characters in the sequence! yes!

L17App2!

Regular expressions: Simple classes using a
range!

–  [a-d] defines a simple class using a range!
!

23	

“hello”.matches(“[a-d]ello”)!

REGEX criteria ! str1 satisfies?!
the character a or b or c or d is in index
position 0!

yes!

the character e is in index position 1! yes!
the character l is in index position 2! yes!
the character l is in index position 3! yes!
the character o is in index position 4! yes!
no further characters in the sequence! yes!

L17App3!

Regular Expressions!

–  [a-d[f-h]] matches !
•  any of a,b,c,d,f,g,h !
•  the union of a-d and f-h!

–  [^a-d] matches !
•  any character that is NOT a, b, c, d,!

–  \d matches any digit!
•  same as: [0-9]!

–  \s matches any whitespace character:!
•  same as: [\t\n\x0B\f\r]!
•  vertical tab is \xOB, aka \u000B!

–  \w matches any word character: !
•  same as: [a-zA-Z_0-9]!
!

24	

L17App4!

L17App5!

L17App6!

L17App7!

Regular Expressions!

–  a* matches !
•  zero or more a’s!

–  a+ matches !
•  1 or more a’s!

–  a? matches !
•  0 or 1 a’s!

–  a{n,m} matches !
•  at least n a’s but not more than m a’s!
!

25	

Regular Expressions!
!
suppose we prompt the user for a time, with the
instructions that the time must be one of 3, 6, or 9 am
or pm !

•  acceptable: 9 am, 3 pm!
•  not acceptable: 10 am, 3 um, 9am, 9:00 am!

–  construct a regex to match this!
•  “[369] [ap]m”!

suppose we want to allow the space to be optional!
•  acceptable: 9am, 12 am, 12pm!
•  not acceptable: 10am, 9:00am!

–  construct a regex to match this!
•  “[369] ?[ap]m” or “[369][]?[ap]m”!
!

26	

 Copyright
© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 6-27

Numeric Strings – Using
the Wrapper Classes!

String s = "1020";

int n1 = Integer.parseInt(s);

long n2 = Long.parseLong(s);

double n2 = Double.parseDouble(s);

float n3 = Float.parseFloat(s);

number to string conversions? best handled using the
+ operator!

How to get primitive values from String
objects!

–  suppose we have a sequence of characters!
–  suppose that sequences happens to be the same

as a literal value from a primitive type!
•  e.g., “897” “875l” “false” “C”!

–  Use any of these static methods!
•  Integer.parseInt(str)!
•  Short.parseShort(str)!
•  Byte.parseByte(str)!
•  Long.parseLong(str)!
•  Double.parseDouble(str)!
•  Float.parseFloat(str)!
•  Boolean.parseBoolean(str)!

–  look at API, note the contract re: parameter!
•  java.lang.NumberFormatException: Value out
of range.!

!

 
!

!
!

!

28	

L17App1b!

L17App1c!

How to get primitive values from String
objects!

–  suppose we have a one-character String and we
want the corresponding char!
•  e.g., “C” “d” “9”!

–  there is a wrapper class Character(just like the
others)!

–  unfo, there is no
Character.parseCharacter(str) or other
such static method!

–  instead:  
char c = “C”.charAt(0)!

 
!

!
!

!

29	

