
CSE 1710	

Lecture 10	
Image and Pixel Services	
The String class	

Strings!
We have covered two chunks of material:!
Week 1:!
•  “String Literals” pp. 22-23; Fig 1.12; PT 1.8!
Week 6:!
•  “The String Class” Section 6.1.1, pp.

219-220!
•  “The Masquerade and the + Operator”

Section 6.1.2, pp. 221-224!
2!

What is the String class?  
!

–  provides services to represent and perform tasks on
strings!

–  the class encapsulates a string as a sequence of
Unicode characters!

–  compare/contrast the representation of a string with
the representation of a character!

!
! !String! !Character!

type: !String !char	
! !non-primitive !primitive!

!

operators: + ! !arithmetic operators !
! ! ! !(cast to int)!
!
!

!

3	

The + Operator : Predict the Output!
	
String x = “hi\n”;	
String y = “there”; 	
String z = x + y; 	
output.println(z);	
	
char a = ‘H’;	
char b = ‘I’;	
output.println(a+b);	
	
!

!
!

!

4	

Details about the character sequence:!

–  the sequence is indexed!
•  the first position is index “0”!
•  the final position is index “the length of the sequence

minus 1”!

–  String provides services to tell us about the
sequence!

–  Methods include:!
•  int : length()!
•  char : charAt(int)!

–  what if index is out of bounds?!
! 5	

Unicode!
–  a unicode character:!

•  is a non-negative numeric value !
•  has a corresponding character according to the Unicode

character tables (as defined by the Unicode Consortium)!

–  Unicode is a computing industry standard !
•  provides consistent encoding, representation and handling

of text !
•  text as expressed in most of the world's writing systems!
•  used by Java and many other programming languages!

!
!
!
!

!
6	

7	

h*p://unicode.org/charts/PDF/U0000.pdf	

The letter J is
found in  
column ‘004’ and  
row ‘A’, !
which makes
‘004A’!
!
This is a
hexadecimal
number, denoted
\u004A!
!
!
!
!
 !

To convert a Unicode hexadecimal number to
decimal:!

1.  take the hex number and identify the four digits: 
\u004A d3d2d1d0 0 0 4 A!

2.  Convert each hex digit to decimal:!
•  the hex di span the digits: [0,…, 9, A, B, C, D, E, F]!
•  this maps to the decimal digits: [0, 15]!
•  hex ‘A’ maps to decimal ’10’, …, ‘F’ maps to ’15’  

!
3.  Plug the digits into the following formula:!
d3d2d1d0 = d3×163 + d2×162 + d1×161 +d0×160!

!
Example: so to convert \u004A to decimal:!
= 0 ×163 + 0 ×162 + 4 ×161 + 10 ×160!
= 4 ×16 + 10 × 1!
= 64 + 10 = 74!

!

!

8	

Unicode!
–  The Unicode Standard consists of a repertoire of

more than 109,000 characters covering 93 scripts!
•  Cyrillic, Latin, Bengali, Thai, Greek, …!
•  the basic set is “Controls and Basic Latin” !
•  U000.pdf, also see Appendix A of JBA!

–  Unicode value denoted \uXXXX, where XXXX is a
hexadecimal value!
•  the decimal value 15 is represented as \u000F 
!

–  unicode makes is possible to talk about the
distance between two characters !

!

! 9	

How to use Unicode directly  
!

!
String s6 = "\u00A5";	
String s7 = "\u00A7";	
String s8 = "\u00AE";	
String s9 = "\u2C16";	
!
char c6 = '\u00A5';	
char c7 = '\u00A7';	
char c8 = '\u00AE';	
char c9 = '\u2C16';!

!
In the case of \u2C16we may be able to represent a
unicode character, but PrintStream may not be able to
print it to the console…!

!
10	

How to use Unicode directly  
!

!
String s6 = "\u00A5";	
String s7 = "\u00A7";	
String s8 = "\u00AE";	
!
char c6 = '\u00A5';	
char c7 = '\u00A7';	
char c8 = '\u00AE';	

!
!

11	

One Caveat: !
some Unicode characters cannot be printed to
the console.!
!
For example, \u2C16 is taken from the
“Glogolitic” table and represents the character:!

!
We can represent the character, but PrintStream
cannot print it to the console…!

!
String s9 = "\u2C16";	
!

!
12	

REMEMBER!!
–  Any string is represented by an object!

–  A variable of type String is used to store the address
of the object.!

!
–  The String object has a state !
•  the state of an object is defined as the value of all

its attributes!
•  the only attribute of a String object is the attribute

that represents the sequence of characters!
•  the state of a String object basically boils down to

what is its sequence of characters?!

13	

REMEMBER!!
–  If the state of a String object is such that its

sequence has no characters at all, how do we
understand this?!
•  this is the empty string!
•  the string has length zero!
•  THIS IS NOT A NULL STRING!

•  What is this “null string”?!
•  technically speaking, “null string” is not really a correctly-

formed term, there is no such thing!
•  HOWEVER, it is often used to mean a string reference that

is set to null.!
•  This means that a String reference has been declared, but

that there is NO String object.!
14	

Can we modify the state of a String object?!
–  NO!
–  Once a string object is created, it cannot be changed.!

•  This is called immutability!
•  Strings are immutable

–  This is an unusual property – MOST other objects are
mutable!

!

15	

But what if we need to modify the state of a
String object?!

Instead of modifying the sequence, we just create new
strings that are modified verisons of the originals.!
–  It is fast and easy, thanks to the + operator!

–  Given this, is it correct to say that String has
mutators?!
•  not technically; they are actually generators of new modified

objects!
!

16	

Images!
This material will be presented in lecture.!
Take good notes – there is little material in
the textbook!

17!

To work with images, we need to:!
1.  work with the file system!
2.  work with the operating system’s window

manager and the platform’s graphics
hardware!

3.  understand colour models and image
representation formats!

4.  understand the services of Pixel and
Picture classes!

5.  iterate and construct conditions [later in
course]! 18!

About files… 
pathnames are system dependent!

–  Windows Local File System (LFS):!
•  C:\USER\DOCS\LETTER.TXT!

–  Windows Uniform Naming Convention (UNC)!
•  \\Server\Volume\File!

–  Unix-like OS!
•  /home/user/docs/Letter.txt!

!
ABSTRACTION: !
Which details are system dependent?!
What can be abstracted away?!

19!

also lists of pathnames are
system dependent!

–  Windows Local File System (LFS):!
•  C:\USER\DOCS\;C:\BIN!

–  Unix-like OS!
•  /home/user/docs/:/usr/bin/:/sbin/!

ABSTRACTION: !
Which details are system dependent?!
What can be abstracted away?!

20!

Pathname abstraction!
ABSTRACTION: !
Which details are system dependent?!
What can be abstracted away?!
!

–  separator (e.g., /, \) !
–  system prefix (e.g., /, \\, C:\) !
–  path separator (e.g., ;, :)!

21!

Useful class: java.io.File!
•  not a utility class; encapsulates File objects!

–  a file in this context can be !
•  a directory !
•  a “normal file” (defined as something that is not a directory)!

–  The constructor for File objects requires a pathname!
•  The class File provides static features!

–  representation of the system-dependent elements!
•  separator, path separator!
•  demo: L10_App2!

22!

The encapsulation of a File…!
– provides delegation of file-related tasks:!
•  does this file exist?!
•  is this file a directory or a normal file?!
•  can I write to this file? !
•  which files are in this directory, if any?!

–  assumes this file is a directory!
•  make a directory, as specified by this file!

–  assumes pathname is not already in use and operation is
allowed !!

23!

The encapsulation of a File…!
!!

– does not provide the means to write to the file
object !
•  for this, you need the services of FileWriter!
•  a FileWriter object encapsulates all of the

working of writing content to a File object!
•  defer this aspect for the time being!

24!

How do I get my hands on a
File object? !

!!
– construct one from scratch!
•  L10_App3!

–  let the user specify one for you!
•  L10_App4!

25! 26!

Digital Images!
•  storage !

–  files contain pixel and/or vector data!
•  pixel – a single point at a given coordinate that has

specific colour attributes !!
•  vector data – information about graphic primitives,

such as lines, curves, shapes!
–  e.g., “draw a circle with radius r with center point at

location (x,y) and with a solid black stroke and a solid fill”!

•  display!
–  whatever the file format, the file is rasterized

to pixels for the graphic display!

27	

A Pixel Image
	

pixel	

28	

A Pixel Image
	

29	

A Pixel Image
	

30	

A Pixel Image
	

31	

A Pixel Image
	

32	

pixel

A Pixel Image
	

33!

Raster!
•  a rectangular grid of pixels!
•  each element has a (x,y) coordinate !

–  the convention is that (0,0) is in the upper left
hand corner!

–  the x part of coordinate indicates the column!
–  the y part of the coordinate indicates the row!
–  in the door and down the stairs!

•  L8App4 – demo of picture explorer!

34!

What is the RGB model?  
Why is it intuitive?!
•  First, we will discuss the basics of vision…!

•  the retina of the human eye is the location
of the photoreceptors!
–  rods !
– cones!

35!

Areas of the Retina  
!•  the center, the fovea !

•  only cone receptors, tightly packed!
–  three types of cones: short-, medium-, and long-

wavelength!
•  no rods!

•  periphery of retina!
– proportion of rods to cones increase toward

edge of retina!

36	

37!

Foveal vision!
–  fovea has a concentration of three types of

cones!
– each type is attuned to a different wavelength!

38	

Hue
	
Red –  
perceived by long-wavelength cones !
Green –  
perceived by medium-wavelength cones!
Blue –  
perceived by short-wavelength cones!

39!

Specialized photoreceptors!
–  peripheral vision!

•  contains mostly rods !
•  rods are attuned to a broad spectrum of light!

–  not specialized to particular wavelengths!
–  more sensitive than cones (the threshold is lower)!

–  fovea!
•  specialized for acute detailed vision!

–  periphery!
•  does not provide acuity, but does detect change in scene

(e.g., movement)!
•  something happened, but not what!
•  rods are more sensitive to light than cones!

40!

Colour is complicated !
– perception based on 2 types of receptors (hue

and intensity) !
– our brain does more seeing than our eyes!
– what we call colour is more accurately

described as hue and brightness!

41!

A Key Fact!
!

–  the combination of red, blue and green is
indistinguishable from white to the human eye!

–  this is exploited by computer displays!

42!

 
Pixels and Subpixels!

•  Many displays have a cluster  
of R, G, B sub-pixels for each  
pixel!

!
!
•  max intensity for R, G, B = seen as white!
•  min intensity for R, G, B = seen as black!
•  … and other saturated colours…!

43	

Color !Red !Green !Blue!
Red !255 ! 0 ! 0!
Green ! 0 !255 ! 0!
Blue ! 0 ! 0 !255!
Yellow !255 !255 ! 0!
Cyan ! 0 !255 !255!
Magenta !255 ! 0 !255!
White !255 !255 !255!
Black ! 0 ! 0 ! 0!

44!

Other cases…!
•  Intensities are all the same!

– perceived as shade of grey!
•  Intensities are different!

– perception depends on relative difference
between strongest and weakest intensities!

•  Given a colour, it can be difficult to
determine the RGB values without a
colour chooser!

45!

RGB Colour Space  
!

black!

blue! red!

green!
cyan! yellow!

white!

magenta!

46!

Hue-Saturation-Value (HSV) Model!
– Each of hue, saturation, and brightness

individually specified!
– similarities to the way humans perceive and

describe colour!

The Picture Explorer!
– L10_App5!

47!

What is this window manager
and why do I care?!

– first, a more fundamental question:!
•  what is the desktop metaphor?!

–  a set of UI concepts that treat the computer display as if
it were the user’s real-world desktop!

–  desktop items include: documents, folders, desk
accessories (calculator, calendar)!

–  the purity of metaphor now diluted and now includes
things without real-world counterpart!

» menu bars, task bars, docks, trashcans, !

– key feature: desktop items can overlap!

48!

What is this window manager
and why do I care?!

–  it is system software!
•  operates computer hardware (the graphics card, in

this case)!
•  provides platform for running apps!

–  it provides display functionality for apps!
•  controls placement and appearance of windows!

–  open, close, minimize, maximize, move, resize!
•  implements look and feel of window decorators!

–  borders (decorative and functional), titlebar (title and
buttons)!

49!

The window manager provides
services to the VM!

– VM: Hi WM, I have this app that wants to
draw something graphical on the display…!

– WM: ok VM, here is some screen real estate.!
•  Your app can draw within that region, but not

outside it. (It can try, but I will never permit it to
happen)!
•  I will decide what actually gets drawn. (There may

be overlapping windows, so your real estate may
be occluded)!
•  I can’t guarantee this region. (The user may move

the window, or resize or minimize it)!
50!

