CSE 1710

Lecture 8
Anatomy of an API
Recap and Review of Core Concepts

From class java.lang.Math

Field Summary

static double PI
The double value that is closer than any other to pi, the
ratio of the circumference of a circle to its diameter.

Field Detail

PI
public static final double PI

The double value that is closer than any other to pi, the ratio of
the circumference of a circle to its diameter.

See Also: Constant Field Values

Copyright
© 2006 Pearson

Packages Details

The Class section

The Field section
Classes

The Constructor section

The Method section
Copyright

© 2006 Pearson

Method Summary

static double abs(double a)

The Returns the absolute value of a double value.
class of static int abs(int a)
jGVO) |an9 Returns the absolute value of an int value.

static double pow(double a, double b)
Returns the value of the first argument raised to the
power of the second argument.

Method Summary
double nextDouble ()
The Scans the next token of the input as an double.
int nextInt()

class of Scans the next token of the input as an int.

Jjava.util

String nextLine ()
Advances this scanner past the current line and
returns the input that was skipped.
long nextLong ()
Scans the next token of the input as an 1ong.
Copyright
© 2006 Pearson

Method Detail

abs

public static double abs(double a)

Returns the absolute value of a double value. If the argument is not negative, the .
argument is returned. If the argument is negative, the negation of the argument is double i nPUttedval ue;
returned. Special cases:

... here would be some statements which prompt the user for input
- If the argument is positive zero or negative zero, the result is positive zero. and read in the inputted value..

- If the argument is infinite, the result is positive infinity. .
- If the argument is NaN, the result is NaN. double myVal = Math.abs(inputtedValue);

Parameters: ... S0 can the method abs possibly change the value of

a - the argument whose absolute value is to be determined inputtedVal ue?
Returns:
the absolute value of the argument. NO!

Primitive values stored in your variables cannot be
inadvertently changed by passing the variables to a method

Copyright Copyright
© 2006 Pearson © 2006 Pearson

InputStream inputStream; + Aclass can have methods with the same name, provided

inputStream = System.in; the signatures are different.
Scanner input = new Scanner(inputStream); - Aclass cannot have two methods with the same signature
... S0 can the constructor Scanner possibly change the state of + Recall, signature is the name and parameters (does not
inputStream? include the return).
YES!
... So can the constructor Scanner possibly change the value of
inputStream?
NO!
Copyright Copyright

© 2006 Pearson © 2006 Pearson

Binding with Most Specific
The compiler wants to bind

* this means to find the target to which an identifier)
resolves Review and Recap from Ch 2

« all identifiers must resolve (must correspond to a definition,
somewhere)

To bind C.m(...) here’s what the compiler does:

- locates C (or else issues)
* locates m(...) in C (or else issues).
« If more than one such m is found, it binds with the "most
specific" one.
* look at abs as an example
Copyright 10
’92006‘ Peeirson‘ .
RQ2.1-2.10 RQ2.11
- f i — holds data .
ier Orr_ns some action N dat — the term scope is used to refer to the block
— has a signature and - hasanameandatype within which a variable has been declared
Teturn oo core parameters, — declared and initiatialized .
— eecompatbiitymustbe i the class defn — does the term scope apply to fields (e.g., class
range of posshilties? assured NO parameters attributes that are public)?
var.methodName (*) / * yes, but in a trivial sort of way
Classname.methodName () var.attributeName * Their scope is anywhere. The class defines the

field. Once a class is imported, the field can be

In general... used anywhere.

— both are members of a class, (also called features)
» method signatures must be unique, attribute names must be unique
— compiler checks invocations:

* does the signature (or the attribute name) match what is in the class
definition?
* the attributes that clients can access are called fields 11 12

RQ2.12
What is a class? What is an object?
— a definition — an actual instance of the
thing that was defined
- e.g., adescription of a - e.g., an actual car
car
— gets created in advance — gets created at runtime
* itis compiled, is bytecode
— it (the bytecode) gets — it gets “born” during
loaded into runtime runtime, it “dies” during
memory by the VM runtime
upon invocation of an — has a state during runtime
app * specific values for all
attributes
13
RQ2.15-2.17
UML Class and Object Diagrams
— full class names separated by colons
* Injava code, full class names separated by dots
— attributes in class diagrams:
attributeName : type
* a+ or - symbol in front means private or public, resp’y
— methods in class diagrams: ype::lib: iRectangle
methodName (param) : type _width: int
type::1lib: :Rectangle -height int
getArea(): int
-width: int
-height int e T A
getArea(): int . Lo -
getCircumference (): int t:Rectangle !
getDiagonal(): int _width: 3 s:Rectangle
getWidth(): int ~height 4
getHeight(): int -width: 2
setWidth(int): void “height 5
setHeight(int): void 15

RQ2.13-2.14
What do classes have? What do objects have?

— they have definitions of — they have a set of
features: attributes, each of which
* static attributes has a value:
* non-static attributes » the static attributes, if any,
« static methods are common to all objects of

a given type; the value

* non-static methods
must be the same

the non-static attributes are
specific to each object; the
values may differ

- they have methods
defined upon them

14

RQ2.18
What is abstraction?
— a process whereby details are replaced with
something simpler

* nature of these details?
— object properties?
» abstraction by parameterization
— details about how a task is performed?
» abstraction by delegation

Why do we use abstraction?
— To reduce complexity

16

RQ2.19
What is an app vs an application?

— app: a class with a main method

— application: an app plus several components

17

RQ2.22-2.23
lllustrations of encapsulation

* knowing how to signal a left turn while
driving a car does not break encapsulation
— knowing how to activate the signal does mean
knowing how the signal actually operates

* e.g., how is signal wired? where is the fuse? what is
the wattage of the bulb?.

* encapsulation makes the lives of the client
and the implementer easier

— the client needs not know how the component
works

— the implementer needs not know what is the
component used for. 19

RQ2.20,2.21

What does it mean to be a client?

- to know how & where to look for components
* understand package structure

* understand class names may not be unique
* understand how to read an API, UML diagrams
— API: a document that specifies what a component does
— to know what you want your app to do

* not necessarily how to implement each and every sub-
component

* you can delegate this to other components

— to know how to use components

* how to construct objects or otherwise get references to them
— for delegation of representation, delegation of tasks

* how to invoke methods, make use of fields
— static and non-static variants

18

RQ2.24

Can the client and implementer roles be
occupied simultaneously?

* Depends on who is looking at the situation

— with respect to end users
* the end user is the client
* the application is an implementer
— with respect to a particular component (no main
method)
* an app that uses the component is the client
* the component is the implementer

20

RQ2.25
What does the VM do when a program
crashes or has a bug?

* for crashes
— VM identifies where the problem occurs in the
stack trace
* for bugs
— VM will not realize that there is a bug, so it
cannot possibly flag them
* debugging
— you (not the VM) need to determine why the
program produced an incorrect result

— may need to trace the entire program ”n

RQ2.27-2.29

Who’s to blame when run-time errors
occur?

* run-time error in the main class
— could be the user
* provided invalid input?
— could be the main class
* has faulty implementation?
* run-time error in a component
— could be the main class
* passed invalid parameters?

— could be the component

* has faulty implementation? »

RQ2.26
So what is the difference between a bug
and other types of errors?
* abug

— depends on some notion of what correct output

looks like

* compile-time error

— compiler has a problem with the syntax

— need to understand compiler’s error message
* run-time error

— VM had a problem running the byte code

— need to understand stack trace
22

RQ2.30-2.31
What are the key concepts about Software
Engineering?
* it is study of software projects and their
progress

+ “Risk Mitigation by Early Exposure” is a key
principle it is not about program
— for instance

» converting the type of a value at runtime is risky
- e.g., converting a double to an int will result in data loss)
* the compiler mitigates this risk by checking type
compatibility and refuse to compile if there is a
violation

24

RQ2.32
What do | need to know about constants?
* literals embedded in expressions or as
parameters are magic numbers
— you used a literal because:

¢ some particular value is needed

* that particular value is pre-defined and unchanging

* magic numbers should be avoided

* use variables instead of magic numbers
* how do you enforce that the value is
predefined and not able to change?

— use the keyword f£inal before the declaration.
25

RQ2.33-2.35

What do | need to know about contracts?

* useful during development and testing

— stipulates the division of responsibilities:
* the client
— needs to ensure the precondition is met
* the implementer
— needs to ensure the postcondition is met
— if precondition is not met, then it is client’s
responsibility for whatever happens

» this absolves the implementer of any responsibility

— implementer may (1) cause crash or (2) return something
which may or may not be as specified under the post

* a dangerous condition can arise if the false
precondition does not cause the program to crash,,

