
CSE 1710	

Lecture 6	
The Client View	

 	
The assigned reading was: 
 
"
•  The Client View

–  sec 2.2.2, pp. 60-64
•  Post-Compilation Errors

–  sec 2.2.3, pp. 64-65
•  Java Standard Library

–  sec 2.2.4, pp. 66-68
•  Readymade I/O

–  sec 2.2.5, pp. 68-70

2	

"Copyright © 2006 Pearson Education Canada Inc.
"Java By Abstraction
" 2-3"

2.2.1 Application Architecture"
• A Java application consists of several cooperating classes.

One of the classes starts the application, and is known as
the main class. The other classes are known as helpers or
components."

• The main class for a desktop application (as opposed to an
applet or servlet) is known as an app. It must have a
method with the following header:"

• The main class delegates to components. And as more
ready-made components become available, application
development will reduce to developing the main class."

public static void main(String[] args)	

"Copyright © 2006 Pearson
Education Canada Inc.

"Java By Abstraction
" 2-4"

2.2.2 The Client View!
• The client is the developer of the main class. The

implementer is the developer of a component.!

• The client understands the big picture, the purpose of
the application. The implementer focuses only on the
inner details of one component.!

• The client knows how to shop for components and
how to read their specs; i.e. knows what each one
does but not how it does it.!

• This course focuses on being a client. It prepares you
to write applications using components that are
already available.!

• Separation of concerns means the client and the
implementer share info on a need-to-know basis.!

"Copyright © 2006 Pearson
Education Canada Inc.

"Java By Abstraction
" 2-5"

The Client View!
• Given a component, the client does not care what is

inside it, only what it does. This is known as its
interface or API (application programming interface). !

• The class of a component thus encapsulates it. An
attempt to look inside is breaking the encapsulation.!

CLIENT

Interface

Interface In
te

rf
ac

e

IMPLEMENTER

Interface

"Copyright © 2006 Pearson
Education Canada Inc.

"Java By Abstraction
" 2-6"

The Client View!
A class is made up of features. A feature is an attribute or a method.
The class of a component classifies each feature as either public or
private depending, respectively, on whether the client needs or does
not need to know about it. !

The API (interface) of a component lists only the headers of its public
methods and the declarations of its public attributes (a.k.a. fields).!

feature

method

attribute
private

public = field

private

public
interfac
e

"Copyright © 2006 Pearson
Education Canada Inc.

"Java By Abstraction
" 2-7"

•  Launch an editor and write the program!
•  Save it as Area.java!E!

2.2.3 Post-Compilation Errors!

"Copyright © 2006 Pearson
Education Canada Inc.

"Java By Abstraction
" 2-8"

•  Launch a console!
•  Compile by issuing: javac Area.java!

•  Barring errors, this generates Area.class!

E!

C!

•  Launch an editor and write the program!
•  Save it as Area.java!

Post-Compilation Errors!

"Copyright © 2006 Pearson
Education Canada Inc.

"Java By Abstraction
" 2-9"

•  Run Area.class by issuing: java Area!
•  Enjoy!!

E!

R!

C!

•  Launch an editor and write the program!
•  Save it as Area.java!

•  Launch a console!
•  Compile by issuing: javac Area.java!

•  Barring errors, this generates Area.class!

Post-Compilation Errors!

 Copyright © 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 2-10

compile-time errors

COMPILE
read source file

Java to bytecode

Area.java Area.class
EDIT

save the file

create or edit

RUN

VM

read one instruction

bytecode to native

CPU

fetch

execute

Area.class

 Copyright © 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 2-11

compile-time errors

COMPILE
read source file

Java to bytecode

EDIT

save the file

create or edit

runtime and logic errors

RUN
launch main class

interact with user

Post-Compilation Errors

"Copyright © 2006 Pearson
Education Canada Inc.

"Java By Abstraction
" 2-12"

lib

bin

jre

lib
jdkx.y.z_n

bin

ext

2.2.4 Case Study: the JDK!
Directory structure:!

 Copyright © 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 2-13

Case Study: the JDK
Top-level
packages

java.awt Provides support for drawing graphics.
AWT = Abstract Windowing Toolkit

java.beans Provide support for Java Beans.
java.io Provides support for file and other I/O operations.

java.lang Provides the fundamental Java classes.
This package is auto-imported by the compiler.

java.math Provides support for arbitrary-precision arithmetic
java.net Provides support for network access.

java.rmi Provides support for RMI.
RMI = Remote Method Invocation

java.security Provides support for the security framework.

java.sql
Provides support for databases access over JDBC
JDBC = Java Database Connectivity,
SQL = Structured Query Language

java.text Provides formatting for text, dates, and numbers.

java.util Miscellaneous utility classes including JCF.
JCF = Java Collection Framework

javax.crypto Provides support for cryptographic operations.

javax.servlet Provides support for servlet and JSP development.
JSP = Java Server Pages

javax.swing Provides support for GUI development.
GUI = Graphical User Interface

javax.xml Provides support for XML processing.
XML = eXtensible Markup Language

 	
Key Concept 2.1  
 
"
Today’s applications must delegate some or
all of its work to other classes.

14	

 	
Key Concept 2.2  
 
"
In the procedural paradigm, the program
invokes methods on the class.

15	

UML (Unified Modeling Language)!

Consider the following UML class diagrams:	

<<utility>>!
type::lib::ToolBox!

computeBMI(int, String): double!
factorial(int): double!
!
!

type::lib::ToolBox!

computeBMI(int, String): double!
factorial(int): double!
!
!

underlined method name
indicates the method is static	
	
recall: a utility class is a class
that cannot be instantiated	

UML (Unified Modeling Language)!

Consider the following UML class diagrams:	

<<utility>>!
type::lib::ToolBox!

computeBMI(int, String): double!
factorial(int): double!
!
!

<<utility>>!
type::lang::Math!

PI: double!

sqrt(double): double!
!

type::lib::Rectangle!

-width: int!
-height int!

getArea(): int!
getCircumference (): int!
getDiagonal(): int!
getWidth(): int!
getHeight(): int!
setWidth(): void!
setHeight(): void!
!

L5App!

main(): long!
toString(): String!
!

