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The  Client  View	

  	
The assigned reading was: 
 
"
•  The Client View 

–  sec 2.2.2, pp. 60-64
•  Post-Compilation Errors

–  sec 2.2.3, pp. 64-65
•  Java Standard Library

–  sec 2.2.4, pp. 66-68
•  Readymade I/O 

–  sec 2.2.5, pp. 68-70
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2.2.1 Application Architecture"
• A Java application consists of several cooperating classes. 

One of the classes starts the application, and is known as 
the main class. The other classes are known as helpers or 
components."

• The main class for a desktop application (as opposed to an 
applet or servlet) is known as an app. It must have a 
method with the following header:"

• The main class delegates to components. And as more 
ready-made components become available, application 
development will reduce to developing the main class."

public static void main(String[] args)	
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2.2.2 The Client View!
• The client is the developer of the main class. The 

implementer is the developer of a component.!

• The client understands the big picture, the purpose of 
the application. The implementer focuses only on the 
inner details of one component.!

• The client knows how to shop for components and 
how to read their specs; i.e. knows what each one 
does but not how it does it.!

• This course focuses on being a client. It prepares you 
to write applications using components that are 
already available.!

• Separation of concerns means the client and the 
implementer share info on a need-to-know basis.!
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The Client View!
• Given a component, the client does not care what is 

inside it, only what it does. This is known as its 
interface or API (application programming interface). !

• The class of a component thus encapsulates it. An 
attempt to look inside is breaking the encapsulation.!
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The Client View!
A class is made up of features. A feature is an attribute or a method. 
The class of a component classifies each feature as either public or 
private depending, respectively, on whether the client needs or does 
not need to know about it. !

The API (interface) of a component lists only the headers of its public 
methods and the declarations of its public attributes (a.k.a. fields).!
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•  Launch an editor and write the program!
•  Save it as Area.java!E!

2.2.3 Post-Compilation Errors!
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•  Launch a console!
•  Compile by issuing:  javac Area.java!

•  Barring errors, this generates Area.class!

E!

C!

•  Launch an editor and write the program!
•  Save it as Area.java!

Post-Compilation Errors!
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•  Run Area.class by issuing:  java Area!
•  Enjoy!!

E!

R!

C!

•  Launch an editor and write the program!
•  Save it as Area.java!

•  Launch a console!
•  Compile by issuing:  javac Area.java!

•  Barring errors, this generates Area.class!

Post-Compilation Errors!
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compile-time errors 

COMPILE 
read source file 

Java to bytecode 

Area.java Area.class 
EDIT 

save the file 

create or edit 

 
RUN 

VM 

read one instruction 

bytecode to native 

CPU 

fetch 

execute 

Area.class 
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compile-time errors 

COMPILE 
read source file 

Java to bytecode 

EDIT 

save the file 

create or edit 

runtime and logic errors 

RUN 
launch main class 

interact with user 

Post-Compilation Errors 
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2.2.4 Case Study: the JDK!
Directory structure:!
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Case Study: the JDK 
Top-level 
packages 

java.awt Provides support for drawing graphics. 
AWT = Abstract Windowing Toolkit 

java.beans Provide support for Java Beans. 
java.io Provides support for file and other I/O operations. 

java.lang Provides the fundamental Java classes. 
This package is auto-imported by the compiler. 

java.math Provides support for arbitrary-precision arithmetic 
java.net Provides support for network access. 

java.rmi Provides support for RMI. 
RMI = Remote Method Invocation 

java.security Provides support for the security framework. 

java.sql 
Provides support for databases access over JDBC 
JDBC = Java Database Connectivity,  
SQL = Structured Query Language 

java.text Provides formatting for text, dates, and numbers. 

java.util Miscellaneous utility classes including JCF. 
JCF = Java Collection Framework 

javax.crypto Provides support for cryptographic operations. 

javax.servlet Provides support for servlet and JSP development. 
JSP = Java Server Pages 

javax.swing Provides support for GUI development. 
GUI = Graphical User Interface 

javax.xml Provides support for XML processing. 
XML = eXtensible Markup Language 

  	
Key Concept 2.1  
 
"
Today’s applications must delegate some or 
all of its work to other classes.
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Key Concept 2.2  
 
"
In the procedural paradigm, the program 
invokes methods on the class.
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UML (Unified Modeling Language)!

Consider  the  following  UML  class  diagrams:	

<<utility>>!
type::lib::ToolBox!

computeBMI(int, String): double!
factorial(int): double!
!
!

type::lib::ToolBox!

computeBMI(int, String): double!
factorial(int): double!
!
!

underlined  method  name  
indicates  the  method  is  static	
	
recall:  a  utility  class  is  a  class  
that  cannot  be  instantiated	



UML (Unified Modeling Language)!

Consider  the  following  UML  class  diagrams:	

<<utility>>!
type::lib::ToolBox!

computeBMI(int, String): double!
factorial(int): double!
!
!

<<utility>>!
type::lang::Math!

PI: double!

sqrt(double): double!
!

type::lib::Rectangle!

-width: int!
-height int!

getArea(): int!
getCircumference (): int!
getDiagonal(): int!
getWidth(): int!
getHeight(): int!
setWidth(): void!
setHeight(): void!
!

L5App!

main(): long!
toString(): String!
!


