
CSE 1710	

Lecture 5	
What is Delegation?	

 	
The assigned reading was: 
 
"
•  What is Delegation?

–  sec 2.1, pp. 48-58
–  Key Concepts 2.1-2.9 [2.10]

2	

 	
Key Concept 2.1  
 
"
Today’s applications must delegate some or
all of its work to other classes.

3	

 	
Key Concept 2.2  
 
"
In the procedural paradigm, the program
invokes methods on the class.

4	

 	
Key Concept 2.3  
"
A method has a signature (name and
parameter types) and a return type (type of
the returned value). If a method is void, then
it has no return. Data is passed to a method
through parameters.

5	

 	
Key Concept 2.4  
 
"
In the modular paradigm, the program
accesses attributes and invokes methods on
the class.

An attribute has a name and a type and
allows data to persist.

Attributes and methods are known collectively
as features.

6	

 	
Key Concept 2.5  
 
"
In the object-oriented paradigm, the
program instantiates the class and uses the
created object (rather than the class).

This paradigm is also known as OOP (for
object oriented paradigm).

Whereas a class has only attributes and
methods, an object also has an object
reference and a state (the value of all its
attributes). 7	

 	
Key Concept 2.6  
 
"
A class diagram in UML (Unified Modelling
Language) represents a class definition.
In such diagrams, a class is depicted as a
rectangle with one or more compartments.
The top compartment is mandatory and
contains the class name (possibly quantified)
and an optional stereotype.
The next two compartments are optional: one
for attributes and one for methods.

8	

 	
Key Concept 2.7  
 
"
A utility class cannot be instantiated.
For a utility class, all features are said to be
static.
All features are accessed/invoked on the
class name.
Such classes are denoted in UML (Unified
Modelling Language) by the stereotype
<<utility>>

9	

 	
Key Concept 2.8  
 
"
An object diagram in UML represents an
object.
In such diagrams, an object is depicted as a
rectangle with two compartments: the object’s
identity is in the top compartment and its
state in the bottom one.

10	

 	
Key Concept 2.9  
 
"
In UML, a dashed line can be placed between:
•  a class diagram and a class diagram
•  a class diagram and an object diagram

Between class diagram A and B means class A
delegates to class B
Between class diagram A and object diagram
X means the object X is an instance of class
A.

11	

 	
Key Concept 2.10  
 
"
Abstraction is a strategy for replacing
complexity with simplicity. Layered
abstractions give rise to abstraction
hierarchies in which higher-level abstractions
have fewer details.

12	

 	
Tasks you should be able to perform:!
!
•  Recognize the delegation of a task and

the delegation of representation within
an application

•  Explain the difference between an object
reference and an object"

13	

 	
Tasks you should be able to perform:!
!
•  Recognize the use of a static method
•  Recognize the use of a non-static method
•  How to declare an variable to represents an

object reference
•  How to obtain an object reference and to

store the reference for subsequent use
•  How to use a static method
•  How to use a non-static method
"
"

14	

Li+le/No Delegation	 Some Delegation	 Much Delegation	

decide on grain type …rye	 decide on grain type	 decide on grain type	

buy the appropriate seed type; learn
about growing techniques	

grow grain	 place an order for a bag of grain	
•  need to find the farmer	
•  need to figure out what size of

bag to buy (see next step)	

harvest grain	

bring grain inside to grinding room	 transport grain to grinding place	

buy grinder	
load hopper of grinder	

place an order to get grain milled 	
•  need to find a mill	
•  need to ensure that you give

them the correctly-‐‑sized bag
(e.g., the mill may stipulate
input conditions, such as min
size of packaging)	

	
place an order: “I’d like a loaf of <fill
in the blank>”	
	

grind grain (repeat until enough
grain obtained)	

secure yeast, water	 secure yeast, water	

prepare dough	 prepare dough	

bake bread	 bake bread	

let bread cool and slice	 let bread cool and slice	

eat bread	 eat bread	 eat bread	
16	

Li+le/No Delegation	 Some Delegation	 Much Delegation	

decide on grain type …rye	 decide on grain type …rye	 decide on grain type	

buy the appropriate seed type; learn
about growing techniques	

grow grain	 place an order for a bag of grain	
•  need to find the farmer	
•  need to figure out what size of

bag to buy (see next step)	

harvest grain	

bring grain inside to grinding room	 transport grain to grinding place	

buy grinder	
load hopper of grinder	

place an order to get grain milled 	
•  need to find a mill	
•  need to ensure that you give

them the correctly-‐‑sized bag
(e.g., the mill may stipulate
input conditions, such as min
size of packaging)	

	
place an order: “I’d like a loaf of <fill
in the blank>”	
	

grind grain (repeat until enough
grain obtained)	

secure yeast, water	 secure yeast, water	

prepare dough	 prepare dough	

bake bread	 bake bread	

let bread cool and slice	 let bread cool and slice	

eat bread	 eat bread	 eat bread	

17	

Li+le/No Delegation	 Some Delegation	 Much Delegation	

decide on grain type …rye	 decide on grain type …rye	 decide on grain type …rye	

buy the appropriate seed type; learn
about growing techniques	

grow grain	 place an order for a bag of grain	
•  need to find the farmer	
•  need to figure out what size of

bag to buy (see next step)	

harvest grain	

bring grain inside to grinding room	 transport grain to grinding place	

buy grinder	
load hopper of grinder	

place an order to get grain milled 	
•  need to find a mill	
•  need to ensure that you give

them the correctly-‐‑sized bag
(e.g., the mill may stipulate
input conditions, such as min
size of packaging)	

	
place an order: “I’d like a loaf of
sliced rye bread”	
	

grind grain (repeat until enough
grain obtained)	

secure yeast, water	 secure yeast, water	

prepare dough	 prepare dough	

bake bread	 bake bread	

let bread cool and slice	 let bread cool and slice	

eat bread	 eat bread	 eat bread	

Example 1: Body Mass Index"

18	

Body Mass Index (BMI) is a heuristic for estimating"
in individual’s body fat based on that individual’s"
height and weight."
"
It is inexact (e.g., it overestimates body fat for athletes "
and underestimates body fat for those with low lean "
body mass."

19	

Suppose we want to compute the Body Mass Index
(BMI) for an particular individual "

"weight: 170 pounds "
"height: 5’9” "

double weightInLbs = 170.0;
int heightInInches = 5*12+9; // height 5'9";
double bmi = weightInLbs

 / (heightInInches*heightInInches) * 703;

these statements handle both storage (of data) and
computation (of BMI). "
the computation is somewhat straightforward."

what bad thing would happen if weightInLbs were
to be declared as int?"

YUCK! “magic number”!
We’ll leave it for now…!

20	

But let’s look at the class called ToolBox!
"
"

http://www.cse.yorku.ca/java/api/type/api/	

How nice!
There is a service that will compute BMI for us. "
We can delegate this task to the class ToolBox!
"
"

So how do we use this service?"
"
"
FIRST QUESTION"
what type of method is this? static or non-static"

21	

Is this a static method?"

22	

Is this a static method?"
What value is returned? "
What parameters do we need?"
What is the contract?"
"

23	

double bmi;
double weight = 170.0;
String height = "5'9”;
bmi = ???

What is the contract?"
"
A paraphrase…"
“Adhere to these specifications for the
parameters and I promise to return to you the
correct BMI value. If you do not adhere, I
promise to throw an exception”	

24	

So to use the method…"

25	

//double bmi;
double weight = 170.0;
String height = "5'9”;
double bmi = ToolBox.getBMI(weight, height);

We have delegated computation,
but NOT storage."

Compare  
"

26	

double weightInLbs = 170.0;
int heightInInches = 5*12+9;
double bmi = weightInLbs

 / (heightInInches*heightInInches) * 703;

double bmi;
double weight = 170.0;
String height = "5'9”;
bmi = ToolBox.getBMI(weight, height);

Example 2:  
Surface Area of Paper"

27	

Suppose we want to derive the surface area of various"
types of paper (letter size, legal size, A3, A4, etc)"

28	

Suppose we want to compute the surface area of a
letter sized sheet of paper"

"width: "21.59 cm (8.5 inches)"
"height: "27.94 cm (11 inches) "

double widthInCM = 21.59;
double heightInCM = 27.94;
double surfaceAreaLetterSizedPaper =

 widthInCM * heightInCM;

these statements handle both storage (of data) and
computation (of surface area). "

the computation is somewhat straightforward."

29	

But let’s look at the class called Rectangle!
"
"

http://www.cse.yorku.ca/java/api/type/api/	

How nice!
There is a service that represents rectangles for us."
It provides various operations get area!!
We can delegate to the class Rectangle!
"
"

So how do we use this service?"
"
"
"
"
"
"
"
FIRST QUESTION"
what type of method is this? static or non-static"
What is “this” rectangle referring to exactly??"
"

30	

We need to use the services of Rectangle to first
represent the shape and then to perform
computation…. "
"
"
"
"
"
"
"
"

31	

//double widthInCM = 21.59;
int widthInCM = 22; // the constructor needs ints!!!
//double heightInCM = 27.94;
int heightInCM = 28; // the constructor needs ints!!!

Rectangle letterSizedPaper;
letterSizedPaper = new Rectangle(widthInCM, heightInCM);

Is this a static method?"
What value is returned? "
What parameters do we need?"

32	

//double widthInCM = 21.59;
int widthInCM = 22;
//double heightInCM = 27.94;
int heightInCM = 28;

Rectangle letterSizedPaper;
letterSizedPaper = new Rectangle(widthInCM, heightInCM);

double surfaceAreaLetterSizedPaper;
surfaceAreaLetterSizedPaper = letterSizedPaper.getArea()

We have delegated computation,
AND storage."

About methods…	
•  A method must belong to a class. 	

–  methods cannot exist in any other fashion 	
•  Methods perform tasks and are named accordingly:	

–  actions or verbs	
•  e.g., computeBMI(double, String)!

–  complete predicate 	
•  e.g., isEnabled()!

•  Methods have returns: 	
–  void or a data type!

33	

About method invocation…	
•  A method invocation must be followed by
its parameters	
–  a pair of parenthesis with zero or more
parameters sandwiched in between	

–  e.g., 	
•  ToolBox.getBMI(weight, height);
•  output.println(“Hello”);

34	

About method invocation…	
•  Classes provide services to clients.	

–  methods are one category of service	
–  fields are another category of service	

•  Clients (you) must indicate the source of the
method: [one of the following]	
–  ClassName.method(…) [this is for static methods]

•  e.g., 	
–  ToolBox.getBMI(weight, height);

–  variable.method(…) [this is for non-‐‑static methods]
•  e.g., 	

–  output.println(“Hello”);
–  letterSizedPaper.getArea();

•  e	

35	

What is “signature” ?	
•  the signature of a method is	

–  the method name together with 	
–  the types of its parameters	
–  e.g., 	

•  computeBMI(double, String)!
•  println(String)

– The method’s return is not considered to be
part of the method’s signature	

•  The methods in a class must be unique	
	 36	

 Copyright © 2006 Pearson Education
Canada Inc.

 Java By Abstraction
 2-37

UML (Unified Modeling Language)!

The class diagram of a utility class in the TYPE library:	

« utility »
java::lang::Math

sqrt(double): double

PI: double

The class diagram of a utility class in the Java library:	

 !

« utility »! !
type::lib::ToolBox! !

computeBMI(int, String): double! !

 Copyright © 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 2-38

UML (of a Non-Utility)!
A class diagram from the TYPE library:!

A class diagram from the Java standard library!

java::util::Date

getTime(): long
toString(): String

width: int
height: int

getArea(): int
getCircumference(): int
getDiagonal(): double
getWidth(): int
setWidth(int): void

type::lib::Rectangle

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 2-39

UML: An Object Diagram!

type::lib::Rectangle
width: int
height: int

getArea(): int

width = 2
height = 5

width = 3
height = 4

s: Rectangle r: Rectangle

