CSE 1710

Lecture 3

What was the take-away?

did it relate to theory?
did it relate to concept?

did it relate to praxis?

The assigned reading was:

» The Assignment Statement
(sec 1.3, pp. 25-34)

* IMD 3.2 (p. 117) try to get the gist of the idea

Who completed the readings?

[KC 1.8]
A Java compiler reads the Java program
from the source file and produces a
bytecode program in the class file.

1. the compiler is an app — what is its name?

2. what language was used to implement the
compiler?

3. how do we (in this course) get our Java

programs compiled?

[KC 1.8]
The compiler produces compile-time errors
when a statement contains syntax or
semantic errors.

1. how are the compile-time errors presented to
us?

2. what is the difference between a syntax error
and a semantic error?

3. does the presence of syntax or semantic errors
mean our program is incorrect?

[KC 1.8]
The virtual machine (VM) is a program that
... reads one bytecode instruction at a time,
translates it to machine language, and
executes it.

1. the VM is an app — what is its name?
2. what language was used to implement the VM?

[KC 1.8]
Addendum: syntax vs semantic errors

syntax error: a statement that does not comply with
what is acceptable to the compiler

— e.g., semicolon missing, expressions incorrectly
constructed (operators missing an operand, non-
balanced parenthesis)

semantic errors: the statements are ok, but there is
a problem in how they are used
— e.g., use of a non-initialized variable

— assigned a value to a variable that has an
incompatible type (int a = 3.0;)

[KC 1.9]
A byte is the smallest addressable unit of
memory. This unit has a content and an
address.

The VM makes use of this memory when the app it is
running needs to represent values or otherwise use
memory.

quick tip! refer back to lecture 02 for more on this

1. Identify the lexical elements below A Note about Statements
2. Are these lines valid expressions?

3. Are these expressions valid statements? * any statement can be described in terms of

the 5 language elements (Fig 1.4)

4+ 4 — keywords, identifiers, literals, operators,
separators

4.0 + 4.0

4+ 4.0 « there are 5 types of statements (JD 1.3)

8 =4 4+ 5 * declaration (for variables, for class and methods too)

+ assignment
* usage of other classes
« flow control (condition, iteration, branching,

exception)
9 10
, .
Let S examlne these tWO Statements Precedence Operator Kind Syntax Operation
+ infix x +y addytox
lnt x =4 + 4; 2 - infix x - y | subtract y from x
int vy = 4.0 + 4.0; * infix x *y multiplyxbyy
-4 > / infix x / y | dividex by y
Let’s identify which operator is being used... P MR | xby |rmdeoely
+ prefix +X identity
- prefix -x negate x
there are actually 4 different addition operators 2 € " profix | t1x | mem s Lirestlien
they are a” denoted + -- prefix --x x=x - 1;result = x
one for each of int, long, float, double 5 + postfix xa+ result=six=x+1
-1
what about byte, short, char? T [pestfix | xm fresltmwxex-d

11

[KC 1.10]
A type is a specification of allowed data
values and their associated operations.

int is a specification of a set of 4294967296
representations and a set of associated operators:
+ - % / % ++ —-=

char is a specification of a set of 65536
representations and NO set of associated
operators

byte is a specification of a set of 256
representations and NO set of associated

operators
13

Keep in mind, in addition to the arithmetic
operators: + - * / % ++ —-—

there are many OTHER kinds of operators
boolean operators

relational operators

the cast operator

15

[KC 1.10]
A type is a specification of allowed data
values and their associated operations.

int is a specification of a set of 4294967296
representations and a set of associated operators:
+ - * / % ++ —=

char is a specification of a set of 65536
representations and NO set of associated
operators

short is a specification of a set of 256
representations and NO set of associated

operators
14

[KC 1.13]
Primitive types are types whose names are
keywords and whose operations are
operators.

So are there types other than primitive types?
Are their operations also operators?

16

What programming constructs
do we know?

* that there are subroutines (aka “methods”)
—e.g. println
* refers to a portion of code within a larger program
* it performs a specific task
* it is relatively independent
— to make use of println, we need a statement
from category #3 (“usage of other classes”)

17

About expressions ...

— expressions get evaluated to obtain a value
— the goal (PRAXIS):

* given an expression, can you determine the type of
the evaluated value?

1. it can be straightforward and quick
2. it can be straightforward and not so quick

3. it can be tricky because you need to remember
some anal rules about the compiler

19

any value must have a type

this type determines:
— a set of possible values
— a set of operations on those values
— a set of behaviours for “border” cases

18

the compiler is anal:

« it insists that all variables must have a type (thus,
you must declare them)
— BREAK THE RULE?
SEMANTIC ERROR! NO BYTECODE!
« for any expression, the operation being attempted
must be defined for the types of the operands
— NOT DEFINED? can the compiler find a solution?

» YES? eg — it can possibly auto-promote the operands
so that the operator becomes defined? OK!

» NO? SEMANTIC ERROR! NO BYTECODE

20

[KC 1.14]

three things give us a value: [p. 25] What is closure
— literals (each has a type))
- 3,3.0, 3.0f, ‘A, false, 28I, 28L, 5.9F — a typeis: [IMD 1.6]

* no literals for byte, short [p.17] * a set of values and

» what’s the point of having 28 and 28L ? * the operations that can be performed on the values
— variables — an operator has closure if the result of that

« easy to know the type — it was declared previously! operator belongs to the same set of values as the
— expressions operands

« the type of its value is not so immediately apparent,
since the compiler may perform automatic promotion

21 22
Recap about closure Expression Evaluation
* arithmetic operators have the property of closure + What if the expression has:
— the result (numeric) will be the same type as the — numeric operands of the same type, and
operands (numeric) [p. 25-26, 29] — arithmetic operators of the same precedence and
* boolean operators have the property of closure association (left-to-right)

* it is straightforward and quick to determine the type of the
value of the expression
— the type will be the same

— the result (boolean) will be the same type as the
operands (boolean) [p. 180]

+ relational operators do not have the property of - for the value, apply operators from left-to-right
closure - exceptions: byte, short, char [no operators, p. 29]
— the result (boolean) will not be the same type as the » If the expression has arithmetic operators of
operands (numeric) [p. 180] different precedence levels

2 * need to apply operators in order of precedence leygl

Precedence Operator Kind Syntax Operation
+ infix x +y addytox
-5 >
- infix x - y | subtract y from x
* infix x * y multiplyx by y
-4 > / infix x / y dividexbyy
% infix x % y remainderof x/y
+ prefix +X identity
- prefix -x negate x
-2 €
++ prefix ++x x=x+ 1;result=x
-- prefix --x x=x - 1;result=x
++ postfix x++ result=x; x =x + 1
-1 >
- postfix x-= result =x; x =x - 1

/5 -

/5 -
2 * 3

2 *
% 4

3% 4

25

27

5+ (4-3)/5-2%*3¢%4

5+ (4-3) /5-2%*3¢%4
5+1/5-2%*3%4

t

tt

26

28

5+ (4-3)/5-2%*3¢%4
5 + -2 * 3 % 4
5 + -2 * 3 % 4

54+ (4-3) /5-2%*3¢%4
5+1/5-2%*3%4

5+ 0 - % 4

5+ 0 - % 4

29

31

5+ (4-3)/5-2%*3¢%4
5+1/5-2%*3%4
5+0-2%*3%4

5+ (4-3) /5-2%*3%4
5+1/5-2%*3%4
5+0-2%*3%4
5+0-6%4

30

32

[T JS I RC IT|
+ + + + +

(LIRS L 6 B 6

+ + + +

(4 -3)/5-2%*3%4
1/5-2%*3¢%4
0-2*3¢%4
0 -
0 -
33

(4-3)/5-2%*3%4
1/5-2%*3¢%4
0-2*3¢%4
0 -6%4

-2
2

35

o o0 0 01 ;m
+ + + + +

w o ;oL

+ + + + +

(4 -3)/5-2%*3%4
1/5-2*3¢%4
0-2*3¢%4

0 -6 %4
0 -2

34

(4 -3)/5-2%*3¢%4

1/5-2%*3%4

-2 * 3 %4
4

- 6 %

36

Expression Evaluation

« What if the expression has:
— numeric operands of different types and

— arithmetic operators

* it is relatively straightforward to determine the type of the
value of the expression

* key thing: remember the promotion rules!

37

5/ 2+ 2.5
=2+ 2.5

39

5/ 2+ 2.5

38

5/ 2+ 2.5
2 + 2.5

here we have an int operand and a double operand

there is a + operator for:

* two int operands,

* two long operands

* two double operands,
* two float operands

but there is no + operator defined for an an int operand
and a double operand

So what happens?
40

uonyouta(y

double

uonjoutoLq

float
long
int
A
I |
byte short char
5/ 2+ 2.5
2 + 2.5
2.0 + 2.5
4.5

5/ 2+ 2.5

2 + 2.5
2.0 + 2.5 auto promotion

41 42

Expression Evaluation

* The expression has manual promotions and
demotions
— cast operator has precedence level (-3) and association
right to left

43 44

(double) 5 / 2 + (int) 2.5

45

(double) 5 / 2 + (int) 2.5
(double) 5 / 2 + 2

5.0 / 2 + 2 manual promotion

47

(double) 5 / 2 + (int) 2.5

(double) 5 / 2 + 2

(double) 5 / 2 + (int) 2.5

(double) 5 / 2 + 2
5.0/ 2 + 2
5.0/ 2.0 + 2

auto promotion

46

48

(double) 5 / 2 + (int) 2.5
(double) 5 / 2 + 2

5.0/ 2+ 2

5.0/ 2.0 + 2

2.5 + 2

(double) 5 / 2 + (int) 2.5
(double) 5 / 2 + 2

5.0/ 2 + 2

5.0/ 2.0 + 2

2.5 + 2

2.5+ 2.0

4.5

49

51

(double) 5 / 2 + (int) 2.5
(double) 5 / 2 + 2

5.0/ 2+ 2

5.0 /2.0 + 2

2.5 + 2

2.5 + 2.0 auto promotion

50

