
CSE 1710	

Lecture 2	

 	
Announcements/Housekeeping!
•  review new info on website !
•  emphasize expectations!
•  abbreviations used:!

JBA = Java By Abstraction (the textbook)!
PT = Programming Tip!
IMD = In More Depth!

•  feedback re: Week #1 labs? !
– extra lab session is being offered TODAY!
•  Tuesday, Sept 11, 4:30-6:00pm!
!
!

2	

 	
Gentle reminder to these students…!
!

Abou Daher, Serena!
Du, Yong Bin!
Gonzalez, Paula!
Julien, Michel Junior!
Leung, Matthew!
Okazaki, Keegan Makoto!
Tang, Si Shuang!
Valle-Garay, Alejandro!

3	

 	
!
!
!
The assigned reading was sec 1.1 and 1.2
(pp. 1-24)!
!
Who completed the readings?!

4	

What are the take-aways?!
do they relate to theory?!
!
do they relate to concept?!
!
do they relate to praxis?!
!
what do these terms mean anyway?!
!

5	

  
!
theory – a system of ideas intended to
explain something!
!
concept – an idea, something conceived of
in the mind!
!
praxis – the putting of theory/concepts into
practice/action!
!
! 6	

can you take the concepts from Ch1 and !
apply this knowledge? (e.g., analyze a class definition,
troubleshoot problems, explain the difference between class
files and java files, …)!

  
!
The class is the smallest building block in
Java.!
Classes are organized in package
hierarchies.!
Related classes are placed in a
subpackage.!
Classes have long names (and short
names).!
!
!
why do I care about this?!
!
!

7	

[KC 1.1]!

  
!
!
an app is made up of classes…!
these classes get run by another app called the
virtual machine (VM)!
!
!
*the VM is not written in bytecode – it is an
executable that uses machine instructions that are
specific to a particular operating system/platform
(e.g., there are different version of the VM, for each of Linux, Solaris,
Mac OS X, Windows, etc) !

!
!

8	

  
!Computer memory!

9	

  
!

10	

1. this is where the *.java
and *.class files live (on
the hard drive)!

2. “run Area.class”  
[typed on keyboard,
or mouse click on
shortcut command]!

3. The VM app is
loaded into
memory!
(set of instructions)!4. app has output

(to screen)!

  
!
!
!
!

11	

RUN
VM

read one instruction

bytecode to native

CPU

fetch

execute

Area.class

this file contains bytecode!
We cannot (easily) read
and understand it!

[KC 1.8]!  
!
!
how do we produce bytecode?!
!

12	

import java.io.PrintStream;

public class Area
{
 public static void main(String[] args)
 {

 PrintStream output;
 output = System.out;
 int width;

 width = 8;
 int height = 3;
 int area = width * height;
 output.println(area);
 }
} 13	 14	

  
!
Classes are written using a coding style.!
!
!
why?!
!

15	

[KC 1.2]!

import java.io.PrintStream;

public class Area

{public static void main(String[] args)

{PrintStream output;output = System.

 out;int width;width = 8;int height = 3;int

area = width * height;output.println(area);}}

16	

import java.io.PrintStream;

public class Area

{public static void main(String[] args)

{PrintStream OUTPUT; OUTPUT = System.

 out;int x;x= 8;int height = 3;int

cost = x * height; OUTPUT.println(cost);}}

17	

  
!
The compiler does not care about
whitespace.!
!
what is whitespace?!
why do I care how the compiler works?!

18	

[KC 1.6]!

19	

compile-time errors

COMPILE
read source file

Java to bytecode

Area.java Area.class
EDIT

save the file

create or edit

import java.io.PrintStream;

public class Area

{public static void main(String[] args)

{PrintStream OUTPUT; OUTPUT = system.

 out;int x;x= 8;int height = 3;int

cost = x * height; OUTPUT.println(cost);}}

20	

  
!
The compiler cares about case.!
!
!
why do I care how the compiler works?!

21	

[KC 1.6]!

  
!
Classes get defined. Their definition
consists of a class header followed by a
class body. !
!
Methods get defined. Their definition
consists of a method header followed by a
method body. !
!
get defined by whom? and for whom?!

!

22	

[KC 1.3]!

  
!
A block is something sandwiched between
two curly braces.!
!
how many blocks?!

!

23	

import java.io.PrintStream;

public class Area
{
 public static void main(String[] args)
 {

 PrintStream output;
 output = System.out;
 int width;

 width = 8;
 int height = 3;
 int area = width * height;
 output.println(area);
 }
} 24	

import java.io.PrintStream;

public class Area
{
 public static void main(String[] args)
 {

 PrintStream output;
 output = System.out;
 int width;

 width = 8;
 int height = 3;
 int area = width * height;
 output.println(area);
 }
} 25	

import java.io.PrintStream;

public class Area
{
 public static void main(String[] args)
 {

 PrintStream output;
 output = System.out;
 int width;

 width = 8;
 int height = 3;
 int area = width * height;
 output.println(area);
 }
} 26	

  
!
The body of the class Area contains one
method definition.!
!
show this is true…!

27	

import java.io.PrintStream;

public class Area
{
 public static void main(String[] args)
 {

 PrintStream output;
 output = System.out;
 int width;

 width = 8;
 int height = 3;
 int area = width * height;
 output.println(area);
 }
} 28	

import java.io.PrintStream;

public class Area
{
 public static void main(String[] args)
 {

 PrintStream output;
 output = System.out;
 int width;

 width = 8;
 int height = 3;
 int area = width * height;
 output.println(area);
 }
} 29	

  
!
There is a thing called a statement.
Statements are delimited by semicolons
(unless we are dealing with a header).!
!
why do I need to recognize where the statements
are?!
!

30	

[KC 1.4]!

import java.io.PrintStream;

public class Area
{
 public static void main(String[] args)
 {

 PrintStream output;
 output = System.out;
 int width;

 width = 8;
 int height = 3;
 int area = width * height;
 output.println(area);
 }
} 31	

  
!
Comments can be found in documentation
or internal.!
!
who reads comments anyways?!
!
what is usability vs correctness?!
how do comments relate to these concepts?!
!

32	

[KC 1.5]!

  
!
Usability – how easy is the app to use? how
learnable is it? how steep is the learning
curve?!
!
Correctness – does the app do what it says
it will do?!
!

33	

  
!
so how do comments relate to the concept
of usability?!
a useable app is intuitive to use – the user
shouldn’t have to read a pile of external
documentation to use an app!
!
a correct app does what is says it will do
(and an app states what it does in its
external documentation)!
!
external documentation refers to things like the API, user
manuals, FAQs, and other such documents (NOT the
comments within the code itself)!

!
34	

  
!
What are all of the lexical elements?!
!
do I need to recognize these?!
!

35	

[KC 1.7]! import java.io.PrintStream;

public class Area
{
 public static void main(String[] args)
 {

 PrintStream output;
 output = System.out;
 int width;

 width = 8;
 int height = 3;
 int area = width * height;
 output.println(area);
 }
}

Keywords, Identifiers, Literals, Operators, Separators
36	

  
!
Suppose I have 4 bits.!
How many unique representations do I get
with these 4 bits?!
!
Task #1: come up with a scheme to represent the
age of a car (in years)!
Task #2: come up with a scheme to represent
hourly pay rates!

37	

[KC 1.6]!  
!So the very same 16 representations can be
used for two different schemes: ages in
years or dollar rates.!
So too can the same 4 bytes be used for two
different schemes: a big set of integers or a
big set of real numbers!
!
the sets are the same size, but the
representations are mapped out differently!

38	

[KC 1.6]!

  
!look at the representation scheme for short
and for char!
both use 2 bytes (or 65536 unique representations)!
•  short represents integers from -32768 to

32767!
•  char represents a code in the Unicode table,

ranging from 0 to 65535!
the sets are the same size, but the
representations are mapped out differently!
!

39	

[KC 1.6]!  
!consider the arrangement of 0’s and 1’s that
represent the integer number 4 !

&!
consider the arrangement of 0’s and 1’s that
represent the real number 4.0!
!
are the 0’s and 1’s the same in both cases?!

40	

[KC 1.6]!

  
!If your app wants to store a value, it needs
to say so in a statement…!
version 1: “Let’s store a value”!

!my $fee = 25;!
!my $payrateperhour = 31.55;!
	(this is how Perl works)	

version 2: “Let’s store this particular type of value”!
!int fee = 25!
!double payRatePerHour = 31.55;!
	(this is how Java works)	

!
which of these versions is strongly typed?!
!

41	

[KC 1.6]!  
!

42	

1. this is where the *.java
and *.class files live (on
the hard drive)!

2. “run Area.class”  
[typed on keyboard,
or mouse click on
shortcut command]!

3. app is loaded
into memory!
(set of instructions)!4. app has output

(to screen)!

43	

0
1
.
24
25
26
27
28
29
30
31
.

Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction 1-43

RUN
VM

read one instruction

bytecode to native

CPU

fetch

execute

Area.class

1. ABSTRACTION!
OF RAM IN !
ARCHITECTURE!

2. ABSTRACTION OF VM  
RUNNING CLASS FILE!

3. ABSTRACTION!
OF VM’s WORKING MEMORY!

44	

0
1
.
24
25
26
27
28
29
30
31
.

1-byte block at address 24!

1-byte block at address 25!

2-byte block at address 26!

4-byte block at address 28!

The diagram is a schematic
of the VM’s working memory!

Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction 1-44

Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction 1-45

0
1
.
23
24

25
26
27
28
29
30
.

What happens when the VM
sees bytecode that
corresponds to this:!

 int width;!
width!

Note that no initialization is involved;  
only an association of a name with an address."

1.  A block big enough to hold an int is
allocated, e.g. a 4B block at 24!

2.  Its address is associated with the
variable name, e.g. 24 with width!

Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction 1-46

0
1
.
23
24

25
26
27
28
29
30
.

width!

1.  A block big enough to hold an int is
allocated, e.g. a 4B block at 24!

2.  Its address is associated with the
variable name, e.g. 24 with widththe!

3.  An entry in the symbol table is made: 
!

Identifier !Type !Block Address!
width! !int !24!

What happens when the VM
sees bytecode that
corresponds to this:!

 int width;!

Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction 1-47

0
1
.
23
24 00000000

00000000

00000000

01000000

25
26
27
28
29
30
.

Identifier !Type !Block Address!
width! !int !24!

width!

representation in two’s
complement (scheme for
integers) !
(the actual representation)!

What happens when the VM
sees bytecode that
corresponds to this:!

 int width = 64;!

Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction 1-48

0
1
.
23
24 01000010

10000000

00000000

00000000

25
26
27
28
29
30
.

Identifier !Type !Block Address!
width! !float!24!

width!

representation in
IEEE-754 (scheme for
floating point numbers)!
(the actual representation)!

What happens when the VM
sees bytecode that
corresponds to this:!

 float width = 64f;!

