
Chapter 7

Recursion

7.1 Introduction

Let us implement the method

1 /**

2 * Prints the given number of *s.

3 *

4 * @param number of *s to be printed.

5 * @pre. n >= 0

6 */

7 public static void stars(int n)

of the class Print. An obvious way to implement this method is the following.

1 public static void stars(int n)

2 {

3 for (int i = 0; i < n; i++)

4 {

5 System.out.print(’*’);

6 }

7 }

However, there are other ways to implement this method. Obviously, if n is zero, then we do not
have to print anything at all. Otherwise, we have to print at least one *. This leads us to the
following skeleton.

1 public static void stars(int n)

2 {

3 if (n == 0)

4 {

5 // do nothing

6 }
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7 else

8 {

9 System.out.print(’*’);

10

11 }

12 }

What remains to be done at line 10 is printing n − 1 *s. In order to accomplish that, we can
delegate to the stars method:

10 Print.stars(n - 1);

As usual, when we invoke a method, such as stars, we have to make sure that its precondition is
satisfied. If we reach line 10, then we have that n > 0 and, hence, n − 1 ≥ 0. So the precondition
of stars is indeed satisfied at line 10.

Note that the stars method is invoked within the body of the stars method. This makes it
a so-called recursive method. The invocations of the method within itself are known as recursive

invocations. For example, the invocation Print.stars(n - 1) on line 10 is a recursive invocation.

Within the body of a recursive method we find one or more base cases and one or more recursive
cases. In a base case, there is no need to delegate to the method itself, whereas a recursive case
contains one or more recursive invocations. The above recursive method stars has a single base
case, namely when n is zero. In that case, line 5 is executed. The method also has a single recursive
case, namely when n is greater than zero. In that case, line 9 and 10 are executed.

The method starsAndPlusses prints a number of *s —this number is given as an argument—
followed by the same number of +s.

1 /**

2 * Prints the given number of *s followed by the given number of +s.

3 *

4 * @param the number of *s and +s to be printed.

5 * @pre. n >= 0

6 */

7 public static void starsAndPlusses(int n)

When implementing a method recursively, we first determine base cases, i.e. those cases in which
we do not need to delegate to the method itself. If n is zero, we do not have to do anything. This
is an example of a base case. Now assume that n is greater than zero. In that case we have to print
the following.

n
︷ ︸︸ ︷
∗ ∗ · · · ∗
︸ ︷︷ ︸

n−1

n
︷ ︸︸ ︷

+ · · ·+
︸ ︷︷ ︸

n−1

+

Note that the substring starting from the second * and ending with the one but last + can be
printed by delegating to Print.starsAndPlusses(n - 1). Hence, to print n *s followed by n +s
we can
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1. print a *,

2. print n− 1 *s followed by n− 1 +s by delegating to Print.starsAndPlusses(n - 1), and

3. print a +.

Combining the above leads us to the following.

1 public static void starsAndPlusses(int n)

2 {

3 if (n == 0)

4 {

5 // do nothing

6 }

7 else

8 {

9 System.out.print(’*’);

10 Print.starsAndPlusses(n - 1);

11 System.out.print(’+’);

12 }

13 }

As in the previous example, we have to make sure that the precondition of the method starsAndPlusses
is satisfied when we invoke it in line 10. If we reach line 10, then we have that n > 0 and, hence,
n− 1 ≥ 0. So the precondition is satisfied. The method has a single base case. In that case line 5
is executed. The method also has a single recursive case. In that case line 9–11 are executed.

To simplify matters a little, all methods in this chapter are static. Note, however, that recursion
can also be used to implement non-static methods.

In the remainder of this chapter, we will provide numerous examples of recursive methods. We
will start with simple examples, such as the stars method presented above, to illustrate recursion.
To implement these methods, using iteration, i.e. using for-, while- and do-loops, may be simpler
than using recursion. However, when we come to more intricate examples, the strength of recursion
will become apparent.1

7.2 Proving Correctness and Termination

First, we present a strategy to prove recursive methods correct and a technique to prove that
recursive methods terminate. Subsequently, we apply these to prove the correctness and termination
of the recursive methods introduced in the previous section.

The correctness proof of a recursive method is split into two parts.

1If a method can be implemented using recursion, then it can also be implemented using iteration. Conversely, if
a method can be implemented using iteration, then it can also be implemented using recursion. So, what should we
use, recursion or iteration? Generally, we choose the technique that gives rise to the simplest code. We will violate
this guideline at the beginning of this chapter, since we want to illustrate recursion by means of simple examples and
we are not aware of any simple examples for which recursion gives rise to simpler code than iteration.
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• For each base case, we prove that it is correct.

• For each recursive case, we assume that the recursive invocations are correct and we prove
under that assumption that the recursive case is correct as well.

The termination proof of a recursive method consists of two steps.

1. We define the size of each invocation of the method. The size has to be a natural number
(i.e. a non-negative integer).

2. We prove that each recursive invocation has a smaller size than the original invocation.

Our strategy to prove correctness can only be used in combination with a proof of termination
using the above proof technique.2

The method stars of the class Print prints a number of *s.

1 /**

2 * Prints the given number of *s.

3 *

4 * @param the number of *s to be printed.

5 * @pre. n >= 0

6 */

7 public static void stars(int n)

8 {

9 if (n == 0)

10 {

11 // do nothing

12 }

13 else

14 {

15 System.out.print(’*’);

16 Print.stars(n - 1);

17 }

18 }

Let us first prove the method correct.

• In the base case (line 11), when n equals zero, we do nothing, which is equivalent to printing
zero *s.

• Consider the recursive case (line 15 and 16). Assume that the recursive invocation Print.stars(n

- 1) is correct, i.e. it prints n - 1 *s. Then the recursive case (line 15 and 16) prints n *s.

∗
︸︷︷︸

line 15

n−1
︷ ︸︸ ︷
∗ · · · ∗
︸ ︷︷ ︸

line 16

2Our correctness proof and our termination proof can be combined into a proof that

for each invocation of the method, the invocation is correct and terminates

by strong induction on the size of the invocation.
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Next, let us prove termination.

1. We define the size of the invocation Print.stars(n) by

size(Print.stars(n)) = n.

From the precondition we can conclude that the size of an invocation is a natural number.

2. The size of the recursive invocation Print.stars(n - 1) is n − 1, which is smaller than n,
the size of the original invocation Print.stars(n).

The method starsAndPlusses prints a number of *s followed by the same number of +s.

1 /**

2 * Prints the given number of *s followed by the given number of +s.

3 *

4 * @param the number of *s and +s to be printed.

5 * @pre. n >= 0

6 */

7 public static void starsAndPlusses(int n)

8 {

9 if (n == 0)

10 {

11 // do nothing

12 }

13 else

14 {

15 System.out.print(’*’);

16 Print.starsAndPlusses(n - 1);

17 System.out.print(’+’);

18 }

19 }

Again, we first prove the correctness of the recursive method.

• In the base case (line 11), when n equals zero, we do nothing, which is equivalent to printing
zero *s followed by zero +s.

• Consider the recursive case (line 15–17). Assume that the recursive invocation Print.starsAndPlusses(n

- 1) is correct, i.e. it prints n - 1 *s followed by n - 1 +s. Then the recursive case (line 15–
17) prints n *s followed by n +s.

∗
︸︷︷︸

line 15

n−1
︷ ︸︸ ︷
∗ · · · ∗

n−1
︷ ︸︸ ︷

+ · · ·+
︸ ︷︷ ︸

line 16

+
︸︷︷︸

line 17

Termination of this method can be proved in the same way as the previous method.
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7.3 Recursive Methods that Return an Integer

Recall that the factorial of n, often denoted as n!, is defined as

n! =

n∏

i=1

i = 1× 2× · · · (n − 1)× n.

Let us implement the method

1 /**

2 * Returns the factorial of the given number.

3 *

4 * @param a number whose factorial is returned.

5 * @pre. n >= 1

6 * @return n!

7 */

8 public static int factorial(int n)

of the Math class using recursion. Note that, in contrast to all recursive methods that we have
developed so far, this method returns a result.

If n is one, then n! is one. This is a base case. Otherwise, n is greater than one. In that case,

n! = 1× 2× · · · × (n− 1)× n = (n− 1)!× n.

To compute (n − 1)! we can delegate to the method itself using Math.factorial(n - 1). Hence,
this is a recursive case. Combining the above, we arrive at the following recursive method.

1 public static int factorial(int n)

2 {

3 int factorial;

4 if (n == 1)

5 {

6 factorial = 1;

7 }

8 else

9 {

10 factorial = Math.factorial(n - 1) * n;

11 }

12 return factorial;

13 }

Note that if we arrive at line 10, then n ≥ 2 and, hence, n− 1 ≥ 1 and, hence, the precondition for
the invocation Math.factorial(n - 1) is satisfied.

Let us prove the method factorial correct.

• In the base case (line 6), when n is one, we assign the variable factorial the value of n! and,
hence, this case is correct.
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• Consider the recursive case (line 10). Assume that the recursive invocation Math.factorial(n

- 1) is correct, i.e. it returns (n−1)!. Then we assign (n−1)!×n = n! to the variable factorial
in line 10. Hence, this case is correct as well.

Next, we show that the method terminates.

1. We define the size of the invocation Math.factorial(n) by

size(Math.factorial(n)) = n.

From the precondition we can conclude that the size of an invocation is a natural number.

2. The size of the recursive invocation Math.factorial(n - 1) is n− 1, which is smaller than
n, the size of the original invocation Math.factorial(n).

7.4 Recursive Methods for Lists

The method contains of the class Collections checks if a element is part of a list.

1 /**

2 * Tests if the given list contains the given element.

3 *

4 * @param element the element.

5 * @pre. element != null

6 * @param list the list.

7 * @pre. list != null

8 * @return true if the given list contains the given element, false otherwise.

9 */

10 public static <T> boolean contains(T element, List<T> list)

Obviously, an empty list, i.e. one of size zero, does not contain the given element. This is a base
case. If the first element of the list is the element for which we are looking, then we have found
it right away. This is a base case as well. Otherwise, the list is nonempty and the first element is
not the one for which we are looking. Hence, we have to look in the rest of the list for the element.
This can be done be delegating and, hence, this is a recursive case.

To obtain the rest of the list (without destroying the original list), we can make a shallow copy
as follows.

List<T> rest = new ArrayList<T>(list.subList(1, list.size()));

The method subList returns a view of a portion of the list. In the above case, it returns a view of
the portion starting at index 1 and ending just before index list.size(), that is, all but the first
element (the element at index 0) of the list. We use the copy constructor of the ArrayList class
to copy this portion.

We can implement the contains method as follows.
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1 public static <T> boolean contains(T element, List<T> list)

2 {

3 boolean contains;

4 if (list.size() == 0)

5 {

6 contains = false;

7 }

8 else

9 {

10 if (element.equals(list.get(0))

11 {

12 contains = true;

13 }

14 else

15 {

16 List<T> rest = new ArrayList<T>(list.subList(1, list.size()));

17 contains = Collections.contains(element, rest);

18 }

19 }

20 return contains;

21 }

In line 17, we have that element != null and rest != null and, hence, the precondition of
contains is satisfied.

The correctness of the contains method can be proved as follows.

• In the first base case (line 6), list is empty. Obviously, an empty list does not contain
element and, hence, setting contains to false is correct.

• In the second base case (line 12), list is nonempty and the first element of list is equal
to element. In this case we have found the element and, hence, setting contains to true is
correct.

• When we reach the recursive case (line 16–17), we know that list is nonempty and the
first element of list is not equal to element. We assume that the recursive invocation
Collections.contains(element, rest) is correct, i.e. it returns whether element is con-
tained in rest.

[first,

rest
︷︸︸︷
· · · ]

︸ ︷︷ ︸

list

Since the first element of list is not equal to element, list contains element if and only if
rest contains element. Therefore,
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contains = Collections.contains(element, rest);

is correct.

We can prove that the contains method terminates as follows.

1. We define the size of the invocation Collections.contains(element, list) by

size(Collections.contains(element, list)) = list.size().

Obviously, list.size() is a natural number.

2. Since rest is obtained by removing the first element of list, rest.size() is smaller than
list.size(). Hence, the size of the recursive invocation Collections.contains(element,

rest) is smaller than the size of the original invocation Collections.contains(element,

list).

The method isConstant of the class Collections checks if a list is constant, i.e. if all its
elements are equal.

1 /**

2 * Tests if the given list is constant, that is, if all elements are the same.

3 *

4 * @param list the list.

5 * @pre. list != null and list does not contain null

6 * @return true if the given list is constant, false otherwise.

7 */

8 public static <T> boolean isConstant(List<T> list)

If the list is empty, then all elements are equal and, hence, the list is constant. If the list contains
a single element, then the list is constant as well. Both are base cases. If the first and the second
element are not equal, then the list is not constant. This is yet another base case. Otherwise, the
list contains at least two elements and the first and second element are equal. In that case, the list
is constant if and only if the sublist starting with the second element is constant. The latter fact
can be determined by invoking the method recursively on the rest of the sublist. Therefore, the
isConstant method can be implemented as follows.

1 public static <T> boolean isConstant(List<T> list)

2 {

3 boolean constant;

4 if (list.size() <= 1)

5 {

6 constant = true;

7 }

8 else

9 {
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10 if (!list.get(0).equals(list.get(1)))

11 {

12 constant = false;

13 }

14 else

15 {

16 List<T> rest = new ArrayList<T>(list.subList(1, list.size()));

17 constant = Collections.isConstant(rest);

18 }

19 }

20 return constant;

21 }

We leave it to the reader to check that the precondition of isConstant is satisfied at line 17.

Let us prove the isConstant method correct.

• In the first base case (line 6), the list is either empty or contains a single element. In both
cases all elements are equal and, hence, the assignment constant = true is correct.

• In the second base case (line 12), the first and second element are not equal and, therefore,
the list is not constant, so the assignment constant = false is correct.

• Let us consider the recursive case (line 16–17). Assume that the recursive call is correct,
i.e. it returns whether rest is constant. If we reach the recursive case, we know that
the list has at least two elements and the first element is equal to the second element.
Hence, list is constant only if rest is constant. Therefore, the assignment constant =

Collections.isConstant(rest) is correct.

We can prove that the method isConstant terminates in the same way as we proved the
termination of the contains method.

The minimum method of the Collections class returns the minimum of a nonempty list of
integers.

1 /**

2 * Returns the minimum element of the given list.

3 *

4 * @param list the list.

5 * @pre. list != null and list.size() > 0 and list does not contain null

6 * @return the minimum element of the given list.

7 */

8 public static int minimum(List<Integer> list)

If the list contains a single integer, then obviously that integer is the minimum. This is a base
case. Assume that the list contains more than one element. Then the minimum is the minimum of

• the first element,
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• the minimum of the rest of the list.

The latter can be obtained by a recursive call.

1 public static int minimum(List<Integer> list)

2 {

3 int minimum;

4 if (list.size() == 1)

5 {

6 minimum = list.get(0);

7 }

8 else

9 {

10 List<Integer> rest = new ArrayList<Integer>(list.subList(1, list.size()))

;

11 minimum = Math.min(list.get(0), Collections.minimum(rest));

12 }

13 return minimum;

14 }

Note that rest != null. Since list does not contain null, rest does not either. If we reach
line 10, list.size() is greater than one and, hence, rest.size() is greater than zero. Therefore,
precondition for the invocation of minimum in line 10 is satisfied.

The correctness of the minimum method can be proved as follows.

• In the base case (line 6), the list has a single element, which is the minimum.

• For the recursive case (line 10–11), assume that the recursive invocation Collections.minimum(rest)

is correct, i.e. it returns the minimum of rest. As we already mentioned above, in this case
the minimum of list is the minimum of the first element and the minimum of the rest of the
list.

The proof of termination is similar to the one presented above.
In all the recursive methods for lists presented above, the method is recursively invoked on a

copy of the list with the first element removed. Rather than removing the first element, we can
also reduce the size of the list in other ways. For example, we can split a list in two as follows.

int middle = list.size() / 2;

List<T> left = new ArrayList<T>(list.subList(0, middle));

List<T> right = new ArrayList<T>(list.subList(middle, list.size()));

As an example, let us consider the minimum method again. In the recursive case we can split
list into left and right. Since the minimum element of list is the minimum of

• the minimum element of left and

• the minimum element of right
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we can implement the minimum method also as follows.

1 public static int minimum(List<Integer> list)

2 {

3 int minimum;

4 if (list.size() == 1)

5 {

6 minimum = list.get(0);

7 }

8 else

9 {

10 int middle = list.size() / 2;

11 List<Integer> left = new ArrayList<Integer>(list.subList(0, middle));

12 List<Integer> right = new ArrayList<Integer>(list.subList(middle, list.

size()));

13 minimum = Math.min(Collections.minimum(left), Collections.minimum(right))

;

14 }

15 return minimum;

16 }

Note that, since list.size() is greater than one when we reach line 10, the lists left and right

are nonempty. This is needed to verify that the preconditions for Collections.minimum(left)

and Collections.minimum(right) are satisfied. The details are left to the reader.
To modify the above correctness proof, we only have to revisit the recursive case (line 10–

13). In that case, we assume that the recursive invocations Collections.minimum(left) and
Collections.minimum(right) are correct, i.e. return the minimum element of the left and the
right part of list, respectively. As we already mentioned above, the minimum element of list
is the minimum of the minimum element of left and the minimum element of right. As a
consequence, the assignment of line 13 is correct.

Termination can be proved as follows.

1. We define the size of the invocation minimum(list) by

size(minimum(list)) = list.size()

2. When we reach line 10 list.size() is greater than one. As a consequence, left.size() and
right.size() are smaller than list.size(). Hence, the size of the recursive invocations
Collections.minimum(left) and Collections.minimum(right) are smaller than the size
of the original invocation Collections.minimum(list).


