
Chapter 6

Implementing Graphical User

Interfaces

6.1 Introduction

To see aggregation and inheritance in action, we implement a graphical user interface (GUI for
short). This chapter is not about GUIs, but we do introduce some of the concepts that play a role
in the implementation of GUIs. The focus of this chapter is aggregation and inheritance.

To implement a GUI, we exploit the model-view-controller (MVC) pattern. This pattern de-
couples the data, the graphical representation of the data, and the interactions of the client with
the data. More precisely, the MVC pattern is based on the following three elements.

• The model represents the data and provides ways to manipulate the data.

• The view provides a graphical representation of the model on the screen.

• The controller translates the client’s interactions with the view into actions that manipulate
the view and the model. These interactions can be menu selections, button clicks, etc.

In our implementation, we introduce the classes Model, View and Controller. Furthermore,
we develop an app, named GUI, which is launched by the client to run the GUI.

The client launches the app GUI. The app creates a Model and a View. Subsequently, the View
creates a Controller. The interactions of the client with the GUI via the View are handled by the
Controller. The Controller subsequently updates the Model and the View.

111



112 Franck van Breugel and Hamzeh Roumani

Client

GUI

Model

View

Controller

Since the Controller updates the Model and the View, it needs access to these objects. As a
consequence, we will design the Controller class in such a way that it has a Model and it also has
a View.

A GUI usually consists of a window with a title and a border. Furthermore, the window may
contain components such as a menu bar, buttons, etcetera. A screenshot of the GUI we will develop
can be found below.

By extending the JFrame class, which is part of the package javax.swing, our View class
inherits more than three hundred methods from JFrame and its superclasses and more than one
hundred attributes of JFrame and its superclasses are part of the state of a View.



August 25, 2010 113

JFrame

View Controller Model

GUI

1 1

We will see more examples of aggregation and inheritance when we implement the classes Model,
View and Controller.

6.2 The Constructor Sections

Before implementing the classes Model, View and Controller, we first focus on their constructors.
As we already mentioned, in the GUI app we create instances of the Model and View classes.

1 Model model = new Model(. . .);

2 View view = new View(. . .);

As we also mentioned, an instance of the Controller class is created in (the constructor of) the
View class.

1 public View(. . .)

2 {

3 Controller controller = new Controller(. . .);

4 }

Since the Controller has a Model and has a View, the Controller class has attributes of type
Model and View.

1 private Model model;

2 private View view;

These attributes are initialized in the constructor of the Controller class.

1 public Controller(Model model, View view)

2 {

3 this.setModel(model);

4 this.setView(view);

5 }



114 Franck van Breugel and Hamzeh Roumani

Note that we have to provide two arguments to the constructor of the Controller class in line 3
of the constructor of the View class, one of type Model and one of type View. The former can be
passed as an argument to the constructor of the View class, whereas the latter is the object on
which the constructor is invoked. This leads to the following constructor of the View class.

1 public View(Model model)

2 {

3 Controller controller = new Controller(model, this);

4 }

Now, we can return to the GUI app and fill in the arguments of the constructors.

1 Model model = new Model();

2 View view = new View(model);

In summary, the GUI app first creates a Model and passes a reference to that Model to the
constructor of the View class. In the constructor of the View class, that reference to the Model is
passed on to the constructor of the Controller class together with a reference to the created View.
Hence, the constructor of the Controller class receives references to the created Model and View.

Once the execution reaches the end of line 1 of the GUI app, memory can be depicted as follows.

...
100 GUI.main invocation

model 200
view

200 Model object
...

When executing line 2 of the GUI app, a memory block for the View object is allocated and the
constructor of the View class is invoked.

...
300 View object

1000 View invocation
this 300
model 200

...

When executing the constructor of the View class, a memory block for the Controller object is
allocated and the constructor of the Controller class is invoked.



August 25, 2010 115

...
400 Controller object

model

view

1100 Controller invocation
this 400
model 200
view 300

...

Once we reach the end of the constructor of the Controller class, the Controller object can be
depicted as follows.

...
400 Controller object

model 200
view 300

...

Once we reach the end of line 2 of the GUI app, its invocation block can be depicted as follows.

...
100 GUI.main invocation

model 200
view 300

...

6.3 Dynamic Menu

We start with a rather simple GUI. The view consists of a menu bar. The menu bar has a single
menu. The items of the menu are ordered in such a way that the most recently selected item is at
the top of the menu. As a consequence, the order of the items may change as items are selected by
the client. Assume that initially, when no items have been selected yet, the items are ordered as
follows.



116 Franck van Breugel and Hamzeh Roumani

After the client has selected the Print item, the items are ordered as follows.

Below, we discuss the Model, View, and Controller classes and the GUI app.

6.3.1 The Model Class

The model contains the data of the GUI. In this case, we keep track of the order of the items of
the menu. Furthermore, we provide the Controller with the method

public void select(String title)

to update the model when the item with the given title has been selected by the client. The
method

public List<String> getTitles()

provides the Controller with the list of titles of the items of the menu. The complete API of the
Model class can be found following this link.

http://www.cse.yorku.ca/~buildIt/api//6/Model.api


August 25, 2010 117

The Attributes Section

To represent the order of the items of the menu, we use a list of the titles of the items. Hence, we
introduce the following attribute.

1 private List<String> titles;

As class invariant, we introduce the following.

1 this.titles != null && this.titles contains no duplicates

The Constructors Section

The Model class only contains a one parameter constructor. In this constructor, we initialize the
attribute titles.

1 public Model(List<String> titles)

2 {

3 this.setTitles(titles);

4 }

The Methods Section

The accessor and mutator are implemented in the usual way. Note that only the accessor is public
so that the Controller can invoke this method.

We have left to implement the select method. We have to move the given title to the
beginning of the list. This can be accomplished by first removing the given title and by next
inserting the given title at the beginning of the list.

1 public void select(String title)

2 {

3 this.getTitles().remove(title);

4 this.getTitles().add(0, title);

5 }

In the following snippet of client code, we create a model for our GUI.

1 List<String> titles = new LinkedList<String>();

2 titles.add("New");

3 titles.add("Open");

4 titles.add("Save");

5 titles.add("Print");

6 titles.add("Exit");

7 Model model = new Model(titles);

Once we have implemented the Model class, we can test its constructor and methods in the
usual way. The code of the Model class can be found by following this link.

http://www.cse.yorku.ca/~buildIt/code//6/Model.java.txt


118 Franck van Breugel and Hamzeh Roumani

6.3.2 The View Class

The view provides the graphical representation of the GUI. In this case, the GUI consists of a
window with the title “Dynamic Menu” and a menu bar. The menu bar has a single menu, entitled
“File”. This menu has five items as shown below.

As we already mentioned in the introductory section of this chapter, the View extends JFrame.
This is reflected in the class header as follows.

1 public class View extends JFrame

The corresponding inheritance hierarchy can be depicted as follows.



August 25, 2010 119

Object

Component

Container

Window

Frame

JFrame

View

The Attributes Section

Our GUI has a title and a menu bar. However, the superclass Frame contains the attribute title
of type String and the superclass JFrame contains an attribute menuBar of type JMenuBar, the
accessor getJMenuBar and the mutator setJMenuBar.1 Hence, the attributes title and menuBar

are already part of the state of the View and the methods getJMenuBar and setJMenuBar are
inherited by View. Therefore, we do not need to introduce any additional attributes.

1To be precise, the JFrame class contains the attribute rootPane of type JRootPane and the JRootPane class
contains the attribute menuBar of type JMenuBar.



120 Franck van Breugel and Hamzeh Roumani
Frame

getTitle() : String

setTitle(String)

String

JFrame

getJMenuBar() : JMenuBar

setJMenuBar(JMenuBar)

JMenuBar

View

1

1

The Constructors Section

As we have already seen in Section 6.2, the constructor of the View class has the following skeleton.

1 public View(Model model)

2 {

3 Controller controller = new Controller(this, model);

4 }

Since our View class extends the JFrame class, we start the constructor by delegating to a
constructor of the JFrame class. We use super("Dynamic Menu") to set the title of the frame to
“Dynamic Menu.” We have left to create the menu bar. A menu bar has a collection of menus and
each menu has a collection of items.

JMenuItem
JMenu

add(JMenuItem)

JMenuBar

add(JMenu)
* *

We create a menu bar as follows.

1 JMenuBar bar = new JMenuBar();

We use the mutator setJMenuBar to initialize the menu bar of the View. We create a menu entitled
“File” as follows.

1 JMenu menu = new JMenu("File");

The menu can be added to the menu bar as follows.

1 bar.add(menu);

We create a menu item entitled “New” as follows.

1 JMenuItem item = new JMenuItem("New");

The item can be added to the menu as follows.



August 25, 2010 121

1 menu.add(item);

In our implementation of the constructor, we delegate to the method

public void setMenu(List<String> titles)

which ensures that the first menu of the menu bar has items with the given titles in the corre-
sponding order. The titles of the items of the menu can be obtained using model.getTitles().
Combining the above, we arrive at the following implementation of the constructor.

1 public View(Model model)

2 {

3 super("Dynamic Menu");

4 Controller controller = new Controller(this, model);

5 JMenuBar bar = new JMenuBar();

6 this.setJMenuBar(bar);

7 bar.add(new JMenu("File"));

8 this.setMenu(model.getTitles());

9 }

The Methods Section

Recall that the setMenu method ensures that the first menu of the menu bar has items with the
given list of titles in the corresponding order. This method can implemented as follows.

1 public void setMenu(List<String> titles)

2 {

3 JMenu menu = this.getJMenuBar().getMenu(0);

4 menu.removeAll();

5 for (String title : titles)

6 {

7 JMenuItem item = new JMenuItem(title);

8 menu.add(item);

9 }

10 }

If we want to have a look at our View, we have to comment out line 4 of the constructor, since
we have not yet implemented the Controller. The following snippet of client code creates a Model
and a View.

1 List<String> titles = new LinkedList<String>();

2 titles.add("New");

3 titles.add("Open");

4 titles.add("Save");

5 titles.add("Print");



122 Franck van Breugel and Hamzeh Roumani

6 titles.add("Exit");

7 Model model = new Model(titles);

8 View view = new View(model);

9 final int WIDTH = 200;

10 final int HEIGHT = 50;

11 view.setSize(WIDTH, HEIGHT);

12 view.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

13 view.setVisible(true);

In line 11, the width and height (in the number of pixels) of the GUI is set using the method
setSize, which is inherited from the Window class. In line 12, the behaviour of the GUI is defined
when the box with the cross at the right upper corner is clicked. The method setDefaultCloseOperation
is inherited from the JFrame class. The constant JFrame.EXIT ON CLOSE is used to specify that
the GUI exits when the box with the cross at the right upper corner is clicked. The method
setVisible, inherited from the Window class, makes the GUI visible.

6.3.3 Event-Driven Programming

Recall that the Controller translates the client’s interactions, with the View into actions that
manipulate the View and the Model. For our GUI, the client can interact with the View by selecting
one of the items of the menu. The following class diagram provides an overview of the classes and
methods that play a role.

ActionEvent

getActionCommand() : String

String

AbstractButton

addActionListener(ActionListener)

setActionCommand(String)

〈〈interface〉〉
ActionListener

actionPerformed(ActionEvent)

Controller

JMenuItem

*

1

1



August 25, 2010 123

Of the above classes we only have to implement the Controller class. The other classes are
part of the Java standard library. We discuss the implementation of the Controller class in the
next section. Below we discuss the additions that have to be made to the View class to signal the
interactions of the client with the View to the Controller

Whenever the client interacts with the view (by, for example, selecting a menu item), the oper-
ating system and the Java virtual machine ensure that the actionPerformed method of the action
listeners of the components (for example, of the menu item) are invoked. In our GUI, whenever
the client selects a menu item, the operating system and the Java virtual machine ensure that the
actionPerformedmethod of the Controller is invoked. From the above diagram we can conclude
that an AbstractButton has ActionListeners and that a JMenuItem is an AbstractButton and,
hence, also has ActionListeners. Furthermore, we can also deduce from the above diagram that
the Controller class implements the ActionListener interface and, hence, a Controller is an
ActionListener.

According to the above diagram, an AbstractButton (and, hence, a JMenuItem) and an
ActionEvent have an action command, which is of type String. As we will see, this action
command provides a link between the Controller and the View.

As we already mentioned above, whenever the client interacts with the view (by, for exam-
ple, selecting a menu item), the operating system and the Java virtual machine ensure that the
actionPerformed method of the action listeners of the components (for example, of the selected
menu item) are invoked. Each invocation of the actionPerformed method is provided with a sin-
gle argument of type ActionEvent. The Java virtual machine ensures that the action command of
this ActionEvent is the same as the action command of the component (for example, of the menu
item). In our GUI, whenever the client selects a menu item, the operating system and the Java
virtual machine ensure that the actionPerformed method of the Controller is invoked with an
ActionEvent, whose action command is the action command of the menu item, as its argument.

Within the View class, we have to

• set the action command of each menu item, and

• add the Controller as an ActionListener of each menu item.

In our GUI, we use the title of each menu item as its action command. We set the action
command of each menu item using the mutator setActionCommand. Hence, we add to the setMenu
method the following.

1 item.setActionCommand(title);

In the setMenu method we also add an ActionListener to each menu item, by adding a
parameter named actionListener of type ActionListener to the signature of the setMenumethod
and by adding the following to the body of this method.

1 item.addActionListener(actionListener);

Hence, we arrive at the following setMenu method.

1 public void setMenu(List<String> titles, ActionListener actionListener)

2 {



124 Franck van Breugel and Hamzeh Roumani

3 JMenu menu = this.getJMenuBar().getMenu(0);

4 menu.removeAll();

5 for (String title : titles)

6 {

7 JMenuItem item = new JMenuItem(title);

8 item.setActionCommand(title);

9 item.addActionListener(actionListener);

10 menu.add(item);

11 }

12 }

Recall that we invoke the setMenu method in the constructor of the View class. Since we have
changed the signature of the setMenu method, by adding a parameter of type ActionListener, we
also have to modify the invocation of the setMenu method. We replace line 8 of the constructor
with

1 this.setMenu(model.getTitles(), controller);

The API of the View class can be found by following this link and the code of the View class
can be found by following this link.

6.3.4 The Controller Class

As we already saw in the above class diagram, the Controller class implements the ActionListener
interface (so that we can use the Controller as the action listener of each menu item). This is
reflected by the following class header.

1 public class Controller implements ActionListener

In Section 6.2 we already discussed the attributes and the constructor of the Controller class.
We have left to introduce the methods of this class. Apart from the usual accessors and mutators,
the Controller class contains a single method, namely the single method of the ActionListener
interface: actionPerformed.

Whenever the client selects a menu item, the Controller has to modify the Model and View.
In particular, the Controller has to invoke the select method on the Model with the title of the
selected item as its argument. Furthermore, the Controller has to invoke the setMenu method
on the View. The latter invocation takes two arguments: the list of titles of the menu items and
the action listener to be associated with the menu items. The former information can be obtained
from the Model using the getTitles accessor. The latter is the Controller itself.

As we already mentioned above, the actionPerformed method takes an ActionEvent object
as its single argument. For our GUI, this ActionEvent contains the title of the menu item that has
been selected as its action command. Hence, the actionPerformed method can be implemented
as follows.

1 public void actionPerformed(ActionEvent event)

2 {

http://www.cse.yorku.ca/~buildIt/api//6/View.api
http://www.cse.yorku.ca/~buildIt/code//6/View.java.txt


August 25, 2010 125

3 this.getModel().select(event.getActionCommand());

4 this.getView().setMenu(this.getModel().getTitles(), this);

5 }

The API of the Controller class can be found by following this link and the code of the
Controller class can be found by following this link.

Next, we show how the actionPerformed method of the Controller class can be invoked
and, hence, be tested in an app. As we have seen above, the actionPerformed method takes an
ActionEvent as its single argument. To invoke the actionPerformed method, we need to create
an ActionEvent object. According to the API of the ActionEvent class, its simplest constructor
takes the following three arguments:

• source – the component that originated the event;

• id – an integer that identifies the event;

• command – a string that specifies the action command associated with the event.

Since we create the ActionEvent in the app, it has no originating component (such as a menu
item). However, we cannot use null for the source, because the constructor throws an excep-
tion in that case. Hence, we provide a generic Object as the first argument. The API pro-
vides a number of constants that can be used for the second argument. We use the constant
ActionEvent.ACTION PERFORMED which indicates that a meaningful action occured. The third and
final argument is the action command. For our GUI, the action command is the title of one of the
menu items. Hence, we can create an ActionEvent object as follows.

1 new ActionEvent(new Object(), ActionEvent.ACTION_PERFORMED, title)

In the app below, we create a Model, View and Controller in the usual way. Then we print
the list of titles, randomly select a title, and print the selected title. Now we can invoke the
actionPerformed method, mimicking that the item with the given title has been selected. Finally,
we print the list of titles so that we can check if the invocation of the actionPerformed method
has the desired effect.

1 List<String> titles = new LinkedList<String>();

2 titles.add("New");

3 titles.add("Open");

4 titles.add("Save");

5 titles.add("Print");

6 titles.add("Exit");

7 Model model = new Model(titles);

8 View view = new View(model);

9 Controller controller = new Controller(view, model);

10 output.println(model.getTitles());

11 Random random = new Random();

12 String title = titles.get(random.nextInt(titles.size()));

13 output.println("Selected title: " + title);

http://www.cse.yorku.ca/~buildIt/api//6/Controller.api
http://www.cse.yorku.ca/~buildIt/code//6/Controller.java.txt


126 Franck van Breugel and Hamzeh Roumani

14 controller.actionPerformed(new ActionEvent(new Object(), ActionEvent.

ACTION_PERFORMED, title));

15 output.println(model.getTitles());

6.3.5 The GUI App

We have already discussed all the ingredients of the GUI app. Here, we simply show the body of
its main method.

1 List<String> titles = new LinkedList<String>();

2 titles.add("New");

3 titles.add("Open");

4 titles.add("Save");

5 titles.add("Print");

6 titles.add("Exit");

7 Model model = new Model(titles);

8 View view = new View(model);

9 final int WIDTH = 200;

10 final int HEIGHT = 50;

11 view.setSize(WIDTH, HEIGHT);

12 view.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

13 view.setVisible(true);

The code of the GUI app can be found by following this link.

6.4 Shuffling the Items

We add a button to our GUI. The button is emtitled “Shuffle.”

http://www.cse.yorku.ca/~buildIt/code//6/GUI.java.txt


August 25, 2010 127

When the client presses the button, the items of the menu are shuffled. For example, assume
that the menu items are ordered as follows.

After the client has pressed the button, the order of the items may have changed as follows.

Next, we discuss the modifications to the classes Model, View and Controller.

6.4.1 The Model Class

Recall that the Model has a list of titles. When the client presses the button, the Controller

should shuffle this list. Hence, we add the method

public void shuffle()



128 Franck van Breugel and Hamzeh Roumani

to shuffle the list of titles. To implement this method, we delegate to the utility Collections,
which is part of the package java.util, as follows.

1 public void shuffle()

2 {

3 Collections.shuffle(this.getTitles());

4 }

6.4.2 The View Class

The modified View has a button. This button can be represented by a JButton object. We may be
tempted to introduce an attribute of type JButton. However, consider the following class diagram.

Component
Container

add(Component)

Window

JFrame

View

*

Note that a Container has a collection of Components. This collection contains the components
(such as buttons and text fields) that are part of the container. Note that our View is a Container.
As a consequence, the collection of Components is part of the state of the View.

Also consider the following class diagram.



August 25, 2010 129

Component

Container

JComponent

AbstractButton

addActionListener(ActionListener)

setActionCommand(String)

JTextComponent

JButton JTextField

Note that a JButton is a Component and, hence, can be added to the above mentioned collection
of Components. Hence, rather than adding an attribute of type JButton to our View, we create a
JButton object and add it to the collection of Components, which is part of the state of our View,
using the add method inherited by our View class from the Container class.

As we did before for the menu items, we have to

• set the action command of the button, and

• add the Controller as an ActionListener of the button.

Recall that the action command is shared by the Component (the JButton in this case), which is
part of the View, and the ActionEvent, which is provided as an argument to the actionPerformed
method of the Controller. Hence, the action command is shared by the View and the Controller.
Rather than arbitrarily placing it in either the View class or the Controller class, we introduce a
new class ActionCommands that contains the action command.

1 public class ActionCommands

2 {

3 public static final String SHUFFLE = "Shuffle";

4 }

To the constructor of the View class we add the following.

1 JButton button = new JButton("Shuffle");

2 this.add(button);

3 button.addActionListener(controller);



130 Franck van Breugel and Hamzeh Roumani

4 button.setActionCommand(ActionCommands.SHUFFLE);

6.4.3 The Controller Class

As we already mentioned above, whenever the client presses the button, the Controller should
invoke the shuffle method on the Model. Hence, we modify the actionPerformed method to the
following.

1 public void actionPerformed(ActionEvent event)

2 {

3 String action = event.getActionCommand();

4 if (action.equals(ActionCommands.SHUFFLE))

5 {

6 this.getModel().shuffle();

7 }

8 else

9 {

10 this.getModel().select(action);

11 }

12 this.getView().setMenu(this.getModel().getTitles(), this);

13 }

6.5 Beyond the Basics

6.5.1 A Round Button

We replace the rectangular button to shuffle the menu items with a round button. Rather than
developing a RoundButton class from scratch, we extend the JButton class.



August 25, 2010 131

Object

Component

Container

JComponent

AbstractButton

JButton

RoundButton

Our RoundButton class inherits more than four hundred methods from JButton and its super-
classes and more than one hundred attributes of JButton and its superclasses are part of the state
of a RoundButton. To express that the RoundButton class is a subclass of the JButton class, we
use the following class header.

1 public class RoundButton extends JButton

In our RoundButton class, we only need to provide a constructor (since constructors are not
inherited) and override the methods paintBorder and contains. The former method paints the
button’s border. Since the border of a RoundButton is round, whereas the border of a JButton is
rectangular, the method needs to be overridden. The latter method defines the shape of the button.
Because a RoundButton is round, whereas a JButton is rectangular, also this method needs to be
overridden.

The constructor of our RoundButton class takes the title of the button as its single argument.
Since the RoundButton class extends the JButton class, we first delegate to a constructor of the
superclass to initialize the state. Furthermore, we have to set the contentAreaFilled attribute to
false so that the area of the JButton, which is rectangular, is not filled.

1 public RoundButton(String title)



132 Franck van Breugel and Hamzeh Roumani

2 {

3 super(title);

4 this.setContentAreaFilled(false);

5 }

The method paintBorder paints the border of the button on the given Graphics object. This
Graphics object is passed to the method by the Java virtual machine. Since our RoundButton is
a JButton and a JButton has a width and a height, we take the diameter of the button to be the
minimum of that width and height.

To draw a circle, we use the method

public void drawOval(int x, int y, int width, int height)

where x and y are the x- and y-coordinate of the left upper corner of the oval to be drawn and
width and height are width and height of the oval to be drawn.

If the width is greater than the height, then the left upper corner has coordinates (width−diameter
2 , 0).

width−diameter
2

0

Otherwise, the left upper corner has coordinates (0, height−diameter
2 ). Both cases can be unified

into one: the left upper corner has coordinates (width−diameter
2 ,

height−diameter
2 ). Note that if the

width is greater than the height, then the diameter is equal to the height and, hence, height−diameter
2

equals 0.

Since we want to draw a circle, we use the diameter of the circle as the width and height of the
oval.

Hence, the paintBorder method can be implemented as follows.

1 public void paintBorder(Graphics canvas)

2 {

3 int diameter = Math.min(this.getWidth(), this.getHeight());

4 canvas.drawOval((this.getWidth() - diameter) / 2, (this.getHeight() -

diameter) / 2, diameter, diameter);

5 }

The method contains checks whether the point specified by the given x- and y-coordinate
falls within the circle that outlines the round button. The operating system and the Java virtual
machine provide the x- and y-coordinate to the contains method.



August 25, 2010 133

The point (x, y) is within the circle if and only if the distance from (x, y) to the centre of the
circle is smaller than or equals to the radius of the circle (the radius is half the diameter). Let
(centerX, centerY) be the coordinates of the centre of the circle.

��

x centerX
//

y

PPPPPPPPPPPPPPPPPP

centerY

The distance from (x, y) to (centerX, centerY) is
√

(x− centerX)2 + (y− centerY)2

Hence, the contains method can be implemented as follows.

1 public boolean contains(int x, int y)

2 {

3 int diameter = Math.min(this.getWidth(), this.getHeight());

4 double centerX = this.getWidth() / 2.0;

5 double centerY = this.getHeight() / 2.0;

6 return Math.sqrt(Math.pow(centerX - x, 2.0) + Math.pow(centerY - y, 2.0))

<= diameter / 2.0;

7 }



134 Franck van Breugel and Hamzeh Roumani


