
Chapter 5

Implementing Inheritance

5.1 What is Inheritance?

Inheritance is a relation. It is also known as the is-a relation. It is a relation on classes. The relation
captures that one class extends another class. The class that is extended is known as the superclass
and the class that extends the superclass is known as the subclass. The subclass inherits certain
features from the superclass. In particular, the subclass inherits the public non-static methods of
its superclass.1

A golden rectangle is a rectangle made out of gold. Besides a width and a height, it also has
a weight. The GoldenRectangle class extends the Rectangle class. It defines a special type of
rectangle and adds a weight to each rectangle. Its API can be can be found at this link.

In the code snippet below, we create a GoldenRectangle. The GoldenRectangle class inherits
the scale method of the Rectangle class. Phrased differently, since a GoldenRectangle is a
Rectangle, we can scale it.

1 final int WIDTH = 3;

2 final int HEIGTH = 4;

3 final int WEIGHT = 80;

4 GoldenRectangle rectangle = new GoldenRectangle(WIDTH, HEIGHT, WEIGHT);

5 final int FACTOR = 3;

6 rectangle.scale(FACTOR);

5.2 UML and Memory Diagrams

The inheritance relation can be depicted in UML class diagrams. For example, the diagram

1It also inherits public attributes of its superclass. However, we declare all non-static attributes to be private and
we access all public static attributes and all public static methods via the class(name). Hence, we can restrict our
attention to public non-static methods.

87

http://www.cse.yorku.ca/~buildIt/api//5/GoldenRectangle.api

88 Franck van Breugel and Hamzeh Roumani

Object

Rectangle

GoldenRectangle

captures the inheritance relation between the classes mentioned in the previous section.
Recall that the state of an object consists of its non-static attributes and their values. Although

the private non-static attributes of a class are not inherited by its subclasses, they are part of the
state of instances of those subclasses. For example, the Rectangle class contains private non-
static attributes named width and height. Since our GoldenRectangle class is a subclass of
the Rectangle class, the attributes width and height and their values are part of the state of a
GoldenRectangle object.

Since a GoldenRectangle has a weight, we will introduce an attribute named weight to capture
that additional information.

Consider the client code of the previous section. When we reach the end of line 4, memory can
be depicted as follows.

...
100 Client.main invocation

WIDTH 3
HEIGHT 4
WEIGHT 80

rectangle

FACTOR

200 GoldenRectangle object
width 3

height 4
weight 80

...

Note that we colour the part of the state which corresponds to attributes of the superclass. This
reflects that these attributes cannot be accessed directly.

5.3 The GoldenRectangle Class

As we already mentioned in Section 5.1, a GoldenRectangle is a Rectangle made of gold and,
hence, our class GoldenRectangle extends the Rectangle class. To reflect that the GoldenRectangle
class is a subclass of the Rectangle class, we use the following class header.

August 25, 2010 89

1 public class GoldenRectangle extends Rectangle

5.3.1 The Attributes Section

A GoldenRectangle is a Rectangle with some additional information, namely its weight (in
grams). Based on the signature of the three parameter constructor and the signature of the accessor
getWeight, we decide to represent this additional information by means of an attribute of type
int. We declare this attribute as follows.

1 private int weight;

Note that we do not introduce attributes to capture the width and height of the golden rectangle.
This information is already represented by attributes of the Rectangle class and, hence, is already
part of the state of a GoldenRectangle object.

As class invariant, we use

1 this.weight >= 0

5.3.2 The Constructors Section

Recall that the state of an object is initialized in the constructors. Since the attributes width and
height are part of the state of a GoldenRectangle object, in the snippet

1 final int WIDTH = 3;

2 final int HEIGHT = 4;

3 final int WEIGHT = 80;

4 GoldenRectangle rectangle = new GoldenRectangle(WIDTH, HEIGHT, WEIGHT);

the attributes width, height and weight get initialized. But how can we initialize the attributes
width and height? These attributes are private and, hence, cannot be accessed directly. However,
within the body of a constructor we can delegate to a constructor of the superclass. Hence, within
the body of the three parameter constructor of the GoldenRectangle, we can delegate to the two
parameter constructor of its superclass Rectangle.

To delegate to a constructor of the superclass, we use the keyword super. In the three parameter
constructor of the GoldenRectangle class, we delegate to the two parameter constructor of the
superclass Rectangle using super(width, height). In this way, we initialize the attributes width
and height. To initialize the weight, we use the private mutator setWeight. This results in the
following constructor implementation.

1 public GoldenRectangle(int width, int height, int weight)

2 {

3 super(width, height);

4 this.setWeight(weight);

5 }

90 Franck van Breugel and Hamzeh Roumani

Consider the above lines of client code. When executing line 4 of the client code, first a block of
memory for the attributes of the GoldenRectangle class and its superclass Rectangle is allocated.

...
100 Client.main invocation

WIDTH 3
HEIGHT 4
WEIGHT 80

rectangle

200 GoldenRectangle object
width

height

weight
...

Next, the three parameter constructor of the GoldenRectangle class is invoked. The corre-
sponding invocation block can be depicted as follows.

...
800 GoldenRectangle invocation

this 200
width 3

height 4
weight 80

...

Within the body of the three parameter constructor of the GoldenRectangle class, the two pa-
rameter constructor of the Rectangle class is invoked by means of super(width, height). Recall
that we implemented the two parameter constructor of the Rectangle class as follows.

1 public Rectangle(int width, int height)

2 {

3 this.width = width;

4 this.height = height;

5 }

The invocation super(width, height) gives rise to an invocation block which can be depicted as
follows.

...
900 Rectangle invocation

this 200
width 3
height 4

...

August 25, 2010 91

Note that in the invocation super(width, height), the parameter this is implicit.

Within the body of the two parameter constructor of the Rectangle class, we assign values to
the attributes width and height of this object, that is, the object at address 200. Hence, once
we reach the end of line 4 of the above constructor, the attributes width and height of the object
at address 200 have the values 3 and 4, respectively.

...
200 GoldenRectangle object

width 3
height 4
weight

...

Next, line 4 of the three parameter constructor of the GoldenRectangle class is executed. In
this line, the weight attribute is initialized. Once the execution reaches the end of that line, the
GoldenRectangle object can be depicted as follows.

...
200 GoldenRectangle object

width 3
height 4
weight 80

...

Next, we implement the copy constructor. It can be implemented in several different ways. For
example, we can delegate to the copy constructor of the superclass.

1 public GoldenRectangle(GoldenRectangle copied)

2 {

3 super(copied);

4 this.setWeight(copied.getWeight());

5 }

The Java compiler requires that the super(...) statement be the first statement of the con-
structor.

5.3.3 The Methods Section

Before we implement the methods of our GoldenRectangle class, let us have a look at its super-
classes Object and Rectangle and some of their methods.

92 Franck van Breugel and Hamzeh Roumani

Object

equals(Object) : boolean

hashCode() : int

toString() : String

Rectangle

compareTo(Rectangle) : int

equals(Object) : boolean

getArea() : int

getHeight() : int

getWidth() : int

hashCode() : int

scale(int)

setHeight(int)

setWidth(int)

toString() : String

GoldenRectangle

equals(Object) : boolean

getWeight() : int

hashCode() : int

toString() : String

Note that we override the methods equals, hashCode and toString. The method getWeight

is new.

The equals Method

Two golden rectangles are the same if they have not only the same width and height, but also the
same weight. To implement the equals method, we start with the usual skeleton.

1 public boolean equals(Object object)

2 {

3 boolean equal;

4 if (object != null && this.getClass() == object.getClass())

5 {

August 25, 2010 93

6 GoldenRectangle other = (GoldenRectangle) object;

7 equal = ???;

8 }

9 else

10 {

11 equal = false;

12 }

13 }

To check if this golden rectangle has the same weight as the other golden rectangle we can use

7 this.getWeight() == other.getWeight()

To check if both golden rectangles have the same width and height, we can delegate to the equals
method of the Rectangle class as follows.2

7 super.equals(other)

Combing the two, we arrive at the following.

7 equal = super.equals(other) && this.getWeight() == other.getWeight();

Consider the following snippet of client code.

1 final int WIDTH = 3;

2 final int HEIGHT = 6;

3 final int WEIGHT = 80;

4 GoldenRectangle first = new GoldenRectangle(WIDTH, HEIGHT, WEIGHT);

5 GoldenRectangle second = new GoldenRectangle(WIDTH, HEIGHT, 2 * WEIGHT);

6 output.println(first.equals(second));

Once we reach the end of line 5, memory can be depicted as follows.

2Note that super. is used to invoke a method of the superclass, whereas super(...) is used to delegate to a
constructor of the superclass.

94 Franck van Breugel and Hamzeh Roumani

...
100 Client.main invocation

WIDTH 3
HEIGHT 6
first 200

second 300

200 GoldenRectangle object
width 3

height 6
weight 80

300 GoldenRectangle object
width 3

height 6
weight 160

...

The invocation of the equalsmethod in line 6 of the client code gives rise to the following invocation
block.

...
600 equals invocation

this 200
object 300
other

...

The invocation block contains the parameters this and object and the local variable other.

Now, let us consider the execution of the body of the equals method. Since object is different
from null and both this and object refer to a GoldenRectangle object, line 6 and 7 of the
equals method are executed. In line 6, the local variable other is initialized.

...
600 equals invocation

this 200
object 300
other 300

...

In line 7, the equals method of the superclass is invoked. This leads to the following invocation
block.

August 25, 2010 95

...
700 super.equals invocation

this 200
object 300
other

...

Again, the invocation block contains the parameters this and object and the local variable other.
Note that the parameter this is implicit in the invocation super.equals(other). The equals

method of the Rectangle class is invoked on the same object on which the equals method of the
ColouredRectangle class is invoked.3

Let us consider the execution of the body of the equals method of the Rectangle class. Recall
that we implemented the equals method in the Rectangle class as follows.

1 public boolean equals(Object object)

2 {

3 boolean equal;

4 if (object != null && this.getClass() == object.getClass())

5 {

6 Rectangle other = (Rectangle) object;

7 equal = (this.getWidth() == other.getWidth()) && (this.getHeight() ==

other.getHeight());

8 }

9 else

10 {

11 equal = false;

12 }

13 return equal;

14 }

Since object is different from null and both this and object refer to a GoldenRectangle object,
line 6 and 7 of the equals method are executed. In line 6, the local variable other is initialized to
(the object at address) 300. In line 7, the width and height of this object, that is, the object at
address 200, and of the other object, that is, the object at address 300, are compared.

In the next fragment of client code we compare a rectangle with a golden rectangle. Consider
the following snippet of client code.

1 final int WIDTH = 3;

2 final int HEIGHT = 6;

3 final int WEIGHT = 80;

4 GoldenRectangle first = new GoldenRectangle(WIDTH, HEIGHT, WEIGHT);

5 Rectangle second = new Rectangle(WIDTH, HEIGHT);

3One may think of super.equals(other) as this.super.equals(other) where super.equals denotes the equals
method of the superclass. Note, however, that this.super.equals(other) is not valid Java syntax.

96 Franck van Breugel and Hamzeh Roumani

6 output.println(first.equals(second));

7 output.println(second.equals(first));

Neither first is equal to second, nor second is equal to first, since first and second are
instances of different classes and, hence, their Class objects (returned by the accessor getClass)
are different. We leave it to the interested reader to verify that the equals method satisfies the
usual properties. We will come back to the equals method and its properties in Section 5.7.

The hashCode Method

The hashCode method returns an integer. This integer can be thought of as an abstraction of the
state of the object. As a consequence, the value returned by the hashCodemethod is usually defined
in terms of the values of the attributes of the class and its superclasses. For our GoldenRectangle
class, the attributes width, height and weight and their values make up the state. The hashCode
method of the superclass Rectangle already takes the attributes width and height into account.
In the hashCode method of the GoldenRectangle class, we combine the result of the hashCode

method of the Rectangle class and the weight attribute. The two integers can be combined in
many ways. In superclass Rectangle we simply add the width and the height. Here we combine
them as follows.4

1 public int hashCode()

2 {

3 final int BASE = 37;

4 return super.hashCode() + BASE * this.getWeight();

5 }

Recall that the hashCode method and the equals method are closely related. Since we override
the equals method and the hashCode method, we have to check if they satisfy the usual property:
if x.equals(y) returns true then x.hashCode() and y.hashCode() return the same integer for all
x and y different from null. We leave it to the interested reader to check that this is indeed the
case.

The toString Method

The toString method returns a string representation of the golden rectangle. For example, the
snippet of client code

1 final int WIDTH = 3;

2 final int HEIGHT = 6;

3 final int WEIGHT = 80;

4Let b be a natural number. We call b the base. The polynomial hashcode of the integers 〈i0, . . . , in〉 is defined by

n∑

k=0

ikb
k
.

The base b is usually a prime number. The details are beyond the scope of this book.

August 25, 2010 97

4 GoldenRectangle rectangle = new GoldenRectangle(WIDTH, HEIGHT, WEIGHT);

5 output.println(rectangle);

produces the output

GoldenRectangle of width 3 and height 6 and weight 80

Note that part of this string, namely Rectangle of width 3 and height 6, is the same as the
string representation returned by the toString method of the Rectangle class for a rectangle of
width 3 and height 6. Hence, we can delegate to the toString method of the superclass to obtain
this part. Therefore, we can implement the toString method as follows.

1 public String toString()

2 {

3 return "Golden" + super.toString() + " and weight " + this.getWeight();

4 }

The code of the GoldenRectangle class can be found by following this link.

5.4 The PricingException Class

Next we add the method

public double getPrice() throws PricingException

to our GoldenRectangle class. This method returns the price (in Canadian dollars) of the golden
rectangle. The price is based on the weight of the golden rectangle and the current gold price. The
method throws a PricingException if the gold price cannot be determined.

To determine the gold price, we utilize the method

public static double priceIn(String currencyCode)

throws MalformedURLException, IOException, IndexOutOfBoundsException

of the LondonGoldExchange class. The API of this class can be found by following this link. The
method returns the current price of one gram of gold in the given currency at the London Gold
Exchange. The currency code for Canadian dollar is CAD. The method may throw three different
types of exceptions. We refer the reader to the API of the LondonGoldExchange class for the
conditions under which these exceptions are thrown. Since we want to hide these details from the
client of our getPrice method, we introduce a new exception class, named PricingException

which will be thrown whenever something goes wrong when determining the gold price.

First, we will implement the getPricemethod. After that, we will implement the PricingException
class.

The price of the golden rectangle is simply the product of its weight and the price of one gram
of gold.

1 return this.getWeight() * LondonGoldExchange.priceIn("CAD");

http://www.cse.yorku.ca/~buildIt/code//5/GoldenRectangle.java.txt
http://www.cse.yorku.ca/~buildIt/api//5/LondonGoldExchange.api

98 Franck van Breugel and Hamzeh Roumani

Note that there is no need to introduce an attribute for the price, since it would be redundant.
Also note that we should not cache the price, because the gold price varies over time.

Whenever the priceInmethod throws an exception, our getPricemethod throws a PricingException.
This can be accomplished by catching the exceptions thrown by the priceIn method, and throwing
instead a PricingException. This leads to the following implementation.

1 public double getPrice() throws PricingException

2 {

3 try

4 {

5 return this.getWeight() * LondonGoldExchange.getPrice("CAD");

6 }

7 catch (MalformedURLException e)

8 {

9 throw new PricingException("The gold price could not be determined");

10 }

11 catch (IOException e)

12 {

13 throw new PricingException("The gold price could not be determined");

14 }

15 catch (IndexOutOfBoundsException e)

16 {

17 throw new PricingException("The gold price could not be determined");

18 }

19 }

The getPrice method throws a PricingException if the gold price cannot be determined.
Rather than throwing an instance of an already existing exception class, we decided to introduce a
new exception class, PricingException, and to throw an instance this new class. Introducing our
own exception class allows the client to easily detect that this exception is thrown by our getPrice
method. Hence, this allows us to separate the ordinary code from the exception handling code.

Next, we implement the PricingException class. Its API can be can be found at this link.
A PricingException is an exception and, hence, our class PricingException extends the class
Exception. This is reflected in the header of our class.

1 public class PricingException extends Exception

Since the PricingException class extends the Exception class, it inherits all public non-static
methods of the Exception class and its superclasses Throwable and Object. For example, it
inherits the getMessage method of the Throwable class.

http://www.cse.yorku.ca/~buildIt/api//5/PricingException.api

August 25, 2010 99

Object

Throwable

getMessage() : String

Exception

PricingException

5.4.1 The Attributes Section

A PricingException is just a special type of exception, but contains no additional information.
Therefore, we do not introduce any new attributes.

5.4.2 The Constructors Section

Recall that the private non-static attributes of the superclasses are part of the state. For exam-
ple, the Throwable class contains a private non-static attribute named detailMessage of type
String. This attribute contains the string which is returned by the getMessagemethod. Since our
PricingException class is a subclass of the Throwable class, the attribute detailMessage and its
value are part of the state of a PricingException object.

To initialize the attributes of the superclasses, such as detailMessage, we delegate to a con-
structor of the superclass.

1 public PricingException(String message)

2 {

3 super(message);

4 }

Note that the Throwable class does not contain a mutator setMessage and, hence, the attribute
detailMessage can only be initialized by delegation to a constructor of the superclass Exception.
That constructor of the superclass Exception in turn delegates to a constructor of its superclass,
Throwable. In that constructor of the Throwable class the attribute detailMessage is initialized.

To implement the default constructor of our PricingException class, we simply delegate to
the default constructor of its superclass.

1 public PricingException()

2 {

3 super();

4 }

100 Franck van Breugel and Hamzeh Roumani

5.4.3 The Methods Section

Our PricingException class contains no new public methods. Hence, we do not have to implement
any. Note, however, that our class inherits methods from the classes Object and Throwable such
as equals and getMessage (the class Exception contains no new public methods either).

The code of the PricingException class can be found by following this link.

5.5 The ColouredRectangle Class

Next, we consider a different extension of the Rectangle class. This time we add some colour to
the rectangle. Its API can be can be found at this link. To reflect that our ColouredRectangle
class extends the Rectangle class, we use the following class header.

1 public class ColouredRectangle extends Rectangle

5.5.1 The Attributes Section

A ColouredRectangle is a Rectangle with some additional information, namely its colour. Based
on the signature of the three parameter constructor and the signature of the accessor getColour
and the return type of the mutator setColour, we decide to represent this additional information
by means of the attribute of type Color (the class Color is part of the java.awt package). We
declare the corresponding attribute as follows.

1 private Color colour;

The classes ColouredRectangle, Rectangle and Color are related as follows.

Rectangle

ColorColouredRectangle
1

Note that this example combines inheritance and aggregation.

5.5.2 The Constructors Section

The API contains two constructors: a three parameter constructor and a two parameter constructor.
Let us first consider the three parameter constructor. Again, we delegate to the superclass to
initialize its part of the state.

1 public ColouredRectangle(int width, int height, Color colour)

2 {

http://www.cse.yorku.ca/~buildIt/code//5/PricingException.java.txt
http://www.cse.yorku.ca/~buildIt/api//5/ColouredRectangle.api

August 25, 2010 101

3 super(width, height);

4 this.setColour(colour);

5 }

In the two parameter constructor, the width and height are set to the given width and height,
and the colour is set to be white. In this case we can delegate to the three parameter constructor
as follows.

1 public ColouredRectangle(int width, int height)

2 {

3 this(width, height, Color.WHITE);

4 }

5.5.3 The Methods Section

Of the methods of the ColouredRectangle class, we only discuss the equalsmethod. Two coloured
rectangles are the same if they not only have the same width and height, but also the same colour.
To compare the width and the height, we delegate to the equals method of the superclass. This
leads to the following implementation.

1 public boolean equals(Object object)

2 {

3 boolean equal;

4 if (object != null && this.getClass() == object.getClass())

5 {

6 ColouredRectangle other = (ColouredRectangle) object;

7 equal = super.equals(other) && this.getColour().equals(other.getColour()

);

8 }

9 else

10 {

11 equal = false;

12 }

13 return equal;

14 }

Note that we use the equals method of the Rectangle class (through inheritance) and the equals
method of the Color class (through aggregation).

The code of the ColouredRectangle class can be found by following this link.

http://www.cse.yorku.ca/~buildIt/code//5/ColouredRectangle.java.txt

102 Franck van Breugel and Hamzeh Roumani

5.6 Implementing Abstract Classes

Abstract classes are often introduced to avoid code duplication. For example, consider the classes
RightRectangularPrism and RightTriangularPrism.

• •

•

~~~~~~~
•

~~~~~~~

• •

•

~~~~~~~
•

~~~~~~~

•

•

~~~~~~~
•

@@@@@@@

•

•

~~~~~~~
•

@@@@@@@

The base of a right rectangular prism is a rectangle and the base of a right triangular prism is a
triangle. In a right rectangular prism all angles are 90◦. In a right triangular prism, apart from
the six angles of the two triangles, all other angles are 90◦. Both a right rectangular prism and a
right triangular prism have a height. Hence, we may represent this information by the following
attribute.

1 private int height;

Rather than duplicating this code in the RightRectangularPrism class and in the RightTriangularPrism
class, we introduce a common superclass, named RightPrism, that contains the common code. Its
API can be can be found at this link.

RightPrism

height : int

equals(Object) : boolean

hashCode() : int

toString() : String

RightRectangularPrism RightTriangularPrism

To prevent the client from creating an instance of the RightPrism class, we declare the class to
be abstract.

http://www.cse.yorku.ca/~buildIt/api//5/RightPrism.api

August 25, 2010 103

1 public abstract class RightPrism

If the client were to attempt to create an instance of this abstract class

1 final int HEIGHT = 5;

2 RightPrism prism = new RightPrism(HEIGHT);

then a compile time error would occur

RightPrismClient.java:2: RightPrism is abstract; cannot be instantiated

RightPrism prism = new RightPrism(HEIGHT);

^

1 error

As we already mentioned, the RightPrism class contains the above declaration of the attribute
height. The corresponding accessor and mutator are private.

Although the client cannot create an instance of the RightPrism class, we do add a constructor
to the class so that subclasses can delegate to it to initialize the height attribute.

1 public RightPrism(int height)

2 {

3 super();

4 this.setHeight(height);

5 }

Note that we delegate to the default constructor of the superclass, the Object class. If a constructor
does not explicitly invoke a superclass constructor, then the Java compiler automatically inserts
super() and, hence, super() can be left out in the above constructor.5

The RightPrism class contains the methods equals, hashCode and toString which all depend
on the height attribute. For example, the equals method can be implemented as follows.

1 public boolean equals(Object object)

2 {

3 boolean equal;

4 if (object != null && this.getClass() == object.getClass())

5 {

6 RightPrism other = (RightPrism) object;

7 equal = this.getHeight() == other.getHeight();

8 }

9 else

10 {

11 equal = false;

12 }

13 }

5If the Java compiler automatically inserts super() and the superclass does not have a default constructor, then
a compile-time error will occur.

104 Franck van Breugel and Hamzeh Roumani

The code of the RightPrism class can be found by following this link.

Let us only have a look at the RightRectangularPrism class. Its API can be can be found at
this link. This class extends the abstract RightPrism class which is reflected in the class header.

1 public class RightRectangularPrism extends RightPrism

As a consequence, the RightRectangularPrism class inherits methods from the Object class, such
as getClass, and from the RightPrism class, namely equals, hashCode, and toString. Further-
more, the attribute height, although not inherited, is part of the state of a RightRectangularPrism
object.

Because a right rectangular prism can be represented by its width, height and depth, and since
the height is already represented in the superclass, we only need to introduce the following two
attributes.

1 private int width;

2 private int depth;

The state of a RightRectangularPrism object, consisting of its width, height and depth, is
initialized as follows.

1 public RightRectangularPrism(int width, int height, int depth)

2 {

3 super(height);

4 this.setWidth(width);

5 this.setDepth(depth);

6 }

Note that we delegate to the constructor of the RightPrism class.

In the RightRectangularPrism class we override the methods equals, hashCode and toString.
For example, the equals method can be implemented as follows.

1 public boolean equals(Object object)

2 {

3 boolean equal;

4 if (object != null && this.getClass() == object.getClass())

5 {

6 RightRectangularPrism other = (RightRectangularPrism) object;

7 equal = super.equals(other)

8 && this.getWidth() == other.getWidth()

9 && this.getDepth() == other.getDepth();

10 }

11 else

12 {

13 equal = false;

14 }

15 }

http://www.cse.yorku.ca/~buildIt/code//5/RightPrism.java.txt
http://www.cse.yorku.ca/~buildIt/api//5/RightRectangularPrism.api

August 25, 2010 105

Note that we delegate to the equals method of the RightPrism class.
The code of the RightRectangularPrism class can be found by following this link.

5.7 Beyond the Basics

5.7.1 The getVolume Method

We want to add a getVolumemethod to the classes that represent right prisms such as RightRectangularPrism
and RightTriangularPrism. Consider, for example, the RightRectangularPrism class. In this
case, its volume is defined as the product of its height, width and depth. However, in the
RightRectangularPrism we cannot compute this product since the attribute height is not ac-
cessible, as is reflected in the following object block.

...
100 RightRectangularPrism object

height 4
width 2
depth 7

...

Each right prism has a base area. However, the base area is computed differently for different
types of right prisms. For example, for a right rectangular prism its base area is the product of its
width and depth. Note that this product can be computed in the RightRectangularPrism class
as follows.

1 public int getBaseArea()

2 {

3 return this.getWidth() * this.getDepth();

4 }

The facts that each right prism has a base area but it cannot be computed in the RightPrism
class, can be reflected by adding the following abstract method to the RightPrism class.

1 public abstract int getBaseArea();

By introducing this method declaration, we enforce that each (non-abstract) subclass has to provide
an implementation of the getBaseArea method. If we were to extend the RightPrism class and
not implement the getBaseArea method, then we would get a compile time error such as

IncompleteRightPrism.java:1: IncompleteRightPrism is not abstract and

does not override abstract method getBaseArea() in RightPrism

public class IncompleteRightPrism extends RightPrism

^

1 error

Given that we have an (abstract) getBaseArea method in the RightPrism class, we can now
implement the getVolume method in the RightPrism class as follows.

http://www.cse.yorku.ca/~buildIt/code//5/RightRectangularPrism.java.txt

106 Franck van Breugel and Hamzeh Roumani

1 public int getVolume()

2 {

3 return this.getHeight() * this.getBaseArea();

4 }

All subclasses of the RightPrism class inherit this getVolume method.
RightPrism

getBaseArea() : int

getVolume() : int

RightRectangularPrism

getBaseArea() : int

RightTriangularPrism

getBaseArea() : int

When we compile the RightPrism class, the invocation this.getBaseArea() in the body of
the getVolumemethod is bound to the getBaseAreamethod of the RightPrism class. At run time,
the getBaseArea method is invoked on an instance of a (non-abstract) subclass of the RightPrism
class. As we already mentioned above, this subclass has to implement the getBaseArea method.
Hence, at run time the invocation this.getBaseArea() in the body of the getVolume method is
bound to the getBaseArea method of that subclass of the RightPrism class.

5.7.2 Preconditions

Recall that we implemented the scale method of the Rectangle class as follows.

1 /**

2 * Scale this rectangle with the given factor.

3 *

4 * @param factor scaling factor.

5 * @pre. factor >= 0

6 */

7 public void scale(int factor)

8 {

9 this.width *= factor;

10 this.height *= factor;

11 }

The Factory class contains a method

public static Rectangle getInstance()

August 25, 2010 107

which returns a Rectangle with random width and height.
A client uses the above classes in an app as follows.

1 Rectangle rectangle = Factory.getInstance();

2 rectangle.scale(0);

3 output.println(rectangle);

When the client runs the app, it does not produce the expected output

Rectangle with width 0 and height 0

After inspecting the API of our Rectangle class, the client blames us since the client has satisfied
the precondition of our scale method, yet our method does not return the expected string.

How is it possible that the scalemethod does not return the expected string? Are we to blame?
After inspecting our scale method, we are convinced that it is correct. Hence, we are not to

blame. However, the client is not to blame either. So, who is to blame?
The implementer of the Factory class also wrote the HiddenRectangle class. This class ex-

tends the Rectangle class and overrides the scalemethod. The precondition of the scale(factor)
method of the HiddenRectangle class is factor> 0 and the method does nothing in case the pre-
condition is not met (recall that as an implementer we can do whatever we want if the precondition
is not met).

The implementer of the Factory class implemented the getInstance method in such a way
that it returns a HiddenRectangle object which is-a Rectangle. As a consequence, at compile
time, the method call rectangle.scale(0) is bound to the scale method of our Rectangle class.
However, at run time, the method call rectangle.scale(0) is bound to the scale method of the
HiddenRectangle class. Hence, it does not set the width and height to zero.

Note that the precondition of the scale method in the HiddenRectangle class strengthens the
precondition of the scale method in the Rectangle class: factor > 0 is stronger than factor

>= 0 since the former implies the latter. As a consequence, the Rectangle class guarantees that
the scale method works as expected if the argument 0 is provided, whereas the HiddenRectangle
class does not. However, a HiddenRectangle object is-a Rectangle and, hence, should behave
like a Rectangle. In particular, its scale method should work as expected if the argument 0 is
provided. Therefore, we blame the implementer of the HiddenRectangle class: the precondition
of the scale method should not have been strengthened.

In a subclass, we can weaken the precondition as is shown in the following alternative imple-
mentation of the HiddenRectangle class.

1 public class HiddenRectangle extends Rectangle

2 {

3 /**

4 * Scale this rectangle with the given factor.

5 * If the factor is negative then its absolute value is used.

6 *

7 * @param factor scaling factor.

8 * @pre. true

9 */

108 Franck van Breugel and Hamzeh Roumani

10 public void scale(int factor)

11 {

12 super.scale(Math.abs(factor));

13 }

14 }

5.7.3 Postconditions

Similarly, it can be shown that the postcondition of a method cannot be weakened in a subclass.
It can be strengthened though.

5.7.4 Exceptions

From the API of the Rectangle class we can conclude that the scale method does not throw an
exception. Hence, in the snippet

1 public static void main(String[] args)

2 {

3 Rectangle rectangle = Factory.getInstance();

4 final int FACTOR = 3;

5 rectangle.scale(FACTOR);

6 }

we do not need to enclose the scale invocation in a try block. As we have seen above, the
getInstance method may return an instance of a subclass of the Rectangle class. If the subclass
overrides the scale method and the getInstancemethod returns an instance of the subclass, then
the overridden scale method is invoked in line 5. As a consequence, the overridden scale method
cannot throw an exception either.

If we were to override the scalemethod in the HiddenRectangle class and throw a RectangleException
if the argument of the scale method were negative and we were to compile the HiddenRectangle
class, then we would get the following error message.

HiddenRectangle.java:9: scale(int) in HiddenRectangle cannot override scale(int)

in Rectangle;

overridden method does not throw RectangleException

public void scale(int factor) throws RectangleException

^

1 error

In summary, when we override a method, we cannot throw any exception that is not thrown by
the method in the superclass.

As we have seen, the getPricemethod of the GoldenRectangle class may throw an exception of
type PricingException. If we override the getPricemethod in a subclass of the GoldenRectangle
class, then we can throw an exception provided that it is an instance of PricingException or one
of its subclasses.

August 25, 2010 109

5.7.5 The equals Method Revisited

In our implementation of the equals method, we use the getClass method to check if the two
objects are of the same type. Can instanceof be used instead? Assume we use

1 if (object != null && object instanceof ColouredRectangle)

instead of

1 if (object != null && this.getClass() == object.getClass())

in the equals method of the ColouredRectangle class. The equals method of the Rectangle

class can be modified similarly. Now consider the following snippet of client code.

1 final int WIDTH = 3;

2 final int HEIGHT = 6;

3 ColouredRectangle first = new ColouredRectangle(WIDTH, HEIGHT, Color.RED);

4 Rectangle second = new Rectangle(WIDTH, HEIGHT);

5 output.println(first.equals(second));

6 output.println(second.equals(first));

On the one hand, because second is not an instance of ColouredRectangle, the invocation
first.equals(second) returns false. On the other hand, since first instanceof Rectangle re-
turns true and first and second have the same width and height, the invocation second.equals(first)

returns true. Hence, this implementation gives rise to an equals method that is not symmet-
ric. Since symmetry is part of the postcondition of the equals method of the Object class
and, as we have seen above, the postcondition cannot be weakened, the equals method of the
ColouredRectangle class should be symmetric as well. Since the implementation of the equals

method using instanceof weakens the postcondition, it is incorrect.

110 Franck van Breugel and Hamzeh Roumani

