
Chapter 2

Implementing Non-Static Features

2.1 Introduction

2.1.1 What are Non-Utilities?

We learned in the previous chapter how to implement a utility, a special kind of class in which the
attributes are associated with the class itself rather than with its instances. In this chapter we turn
to the general case in which different instances of the class can have different states. Most classes
belong to the non-utility category, and because of this, it is common to drop the “non-utility”
qualifier and refer to these classes as just classes. In this chapter, we focus our attention on those
classes all features of which are not static. In the next chapter, we will discuss classes with both
static and non-static features.

Since a class needs to be instantiated before it can be used, its client must begin by creating
an instance of it (i.e. an object). As an example, consider the Rectangle class the API of which
is shown here. The following fragment shows how a client can use this class. The client starts by
creating an empty rectangle using the default constructor and then printing it. It then creates a
non-empty rectangle and prints it. Finally, it changes the width of the non-empty rectangle using
a mutator and then prints the mutated object.

1 Rectangle empty = new Rectangle();

2 output.println(empty);

3

4 int width = 0;

5 int height = 1;

6 Rectangle rectangle = new Rectangle(width, height);

7 output.println(rectangle);

8

9 width = 2;

10 rectangle.setWidth(width);

11 output.println(rectangle);

The full example can be found at this link.

27

http://www.cse.yorku.ca/~buildIt/api//2/Rectangle.api/Rectangle.html
http://www.cse.yorku.ca/~buildIt/code//2/RectangleIntro.java.txt

28 Franck van Breugel and Hamzeh Roumani

2.1.2 UML and Memory Diagrams

We saw in Section 1.1.3 that UML class diagrams can be used to represent utilities. These same
diagrams can also be used to represent other classes by simply dropping the <<utility>> stereo-
type. For example, a UML class diagram for the Rectangle class of the previous section is shown
below. Note that the attribute box is empty and that the return of void methods is left blank.

Rectangle

+ equals(Object): boolean

+ getHeight(): int

+ getWidth(): int

+ setHeight(int)

+ setWidth(int)

+ toString(): String

The memory diagrams introduced in Section 1.1.3 can also be used for other classes with one
notable addition: the implicit parameter in invocation blocks. As an example, consider the code
fragment of the previous section which creates two instances of the Rectangle class and mutates
one of them. When the invocation of the setWidth method on line 10 is executed, memory can be
depicted as shown in the following diagram.

...
100 Client.main invocation

empty 300
width 2

height 1
rectangle 500

200 Rectangle class

300 Rectangle object

500 Rectangle object

600 setWidth invocation
this 500

width 2
...

The diagram shows an invocation block for the main method of the Client class, a class block for
the Rectangle class, two object blocks for the two created Rectangle instances, and an invocation
block for the setWidth method. Recall that, in the client’s concern, an invocation block contains
one entry for each argument passed to the method. For the implementer, this is true only if the

August 25, 2010 29

invoked method is static. For non-static methods, however, the block contains an additional entry
for the so-called implicit parameter. This parameter is automatically added by the compiler so even
a method such as getWidth, which does not have any parameter, will end up having one parameter.
The name of the added parameter is this and its value is the value of the object reference on which
the method is invoked.

With the implicit parameter in the invocation block we can see how a method residing in the
class block knows on which object it should operate. For example, when the setWidth method
receives control, it will find 500 as the value of the parameter this and 2 as value of the parameter
width. Hence, all it needs to do is set the width of the Rectangle object on address 500 to the
value 2. We will revisit the implicit parameter at more depth throughout this chapter.

2.1.3 Check your Understanding

Consider the following fragment of client code.

1 String s1 = new String("computing");

2 String s2 = new String("^c[a-z]+");

3 boolean ok = s1.matches(s2);

4 output.println(ok);

Draw a memory diagram that depicts a snapshot of memory when the statement in line 3 is
executing, i.e. just before the matches method returns.

2.2 How: The Class Definition

2.2.1 Class Structure

Implementing a class means writing its so-called class definition. Its general structure is identical
to that of a utility class, namely

1 // any needed package statement

2 // any needed import statements

3

4 public class SomeName

5 {

6 // the attribute section

7

8 // the constructor section

9

10 // the method section

11 }

The class definition has three sections, one for attributes, one for constructors, and one for methods.
These three sections may appear in any order but, as a matter of style, we will adhere to the above
order.

30 Franck van Breugel and Hamzeh Roumani

If a class implements one or more interface then its header must declare this fact by using the
keyword implements followed by a comma-separated list of implemented interfaces. For example,
if class C implements the interfaces I1 and I2 then its header becomes

1 public class C implements I1, I2

This information also appears in the API. A client can deduce from this information that the
class C contains all the methods specified in the interfaces I1 and I2. As we will see later in this
chapter, an implementer has to ensure that the class C implements all the methods specified in the
interfaces I1 and I2. The latter fact is checked by the compiler.

2.2.2 Declaring and not Initializing Attributes

As an implementer of a class, our first task is to determine the attributes that are needed to meet the
specification stated in the API of the class. This task is non-trivial because a typical API does not
specify its attributes directly. We therefore need to read the API carefully, especially its constructor
section, in order to understand what the class encapsulates and then infer the needed attributes. It
should be noted that the final outcome of this task is not unique: different implementers may come
up with a different attributes (in number or in type) and all these implementations are “correct”
because their differences are not visible to the client.

Once the attributes are determined, we define them in the attribute section of the class. The
definition has the following general form:

access type name;

or

access final type name;

Next, we discuss the different elements in some detail.

• access (also known as the access modifier) can be either public, which means this is a field, or
private, which means it is invisible to the client. 1 It is a key software engineering guideline
to keep all non-final attributes private. First of all, it forces the client to use a mutator and,
hence, prevents the client from assigning wrong values to them, e.g. assigning a negative value
to a field intended to hold the age of a person. Secondly, private attributes do not show up
in the API and, hence, declaring attributes private (rather than public) simplifies the API.
Finally, since private attributes do not show up in the API, their type and name can be
changed by the implementer without introducing any changes to the API.

• final is used if this attribute is a constant. Note that since these attributes are not static, the
word “constant” means it is constant per object, not per class; i.e. the value of the attribute
cannot be changed, but it does not have to be the same for all instances of the class.

• type specifies the type of this attribute. It can be primitive or non-primitive.

1The access modifier in Java can also be protected, which makes the attribute visible only to subclasses of this
class, or can be left blank, which makes the attribute visible only to classes in the same package as this class.

August 25, 2010 31

As an example, we consider the Rectangle class introduced in the previous section. We see from
its API that it encapsulates a rectangle. We also note that the API lists constructors, accessors,
and mutators that refer to the width and height of the rectangle using the int type. Hence, it is
reasonable to capture the state of such a rectangle using a pair of int attributes (other possibilities
exist and we will examine this further later in this chapter). Based on this, we start the class
definition of Rectangle as follows:

1 public class Rectangle

2 {

3 private int width;

4 private int height;

5 ...

6 }

When we define attributes or refer to them, we have to keep the following points in mind:

• We should not initialize attributes as we declare them. The initialization of attributes is done
on an object-by-object basis by the constructor. Contrast this with the opposite rule that
we saw in the previous chapter for static attributes. Spend some time to think through this
difference: why are static attributes initialized with their declaration whereas non-static ones
are not?

• It is unfortunate that the Java compiler takes a cavalier attitude toward attribute initializa-
tion: it does not object if we initialize a non-static attribute as we declare it, and it will assign
a default value for each attribute we leave without initialization! This behaviour makes code
harder to understand, increases the exposure to assumption risks (see Section 1.2.2), and en-
courages habbits that may not be supported in other languages. In this book, we will always
initialize static attributes as we declare them and leave the initialization of non-static ones
to the constructor section.

• The scope of an attribute is the entire class.

• Recall that we refer to static attributes using the C.a syntax, where C is the name of the
class to which the attribute belongs and a is the name of the attribute. A similar syntax is
used for non-static attributes. We use the object reference in place of the class name. We
already saw in Section 2.1.2 that the keyword this is used to refer to the object on which
the method is invoked. Hence, we write this.a whenever we want to refer to the attribute a
of the object on which the method is invoked.

• It is unfortunate that the Java compiler takes a casual approach toward attribute reference:
it does not object if we use this to refer to static attributes (although tools such as Eclipse
do provide a warning) or if we refer to attributes by their name without the this. prefix (i.e.
as if they were local variables). This may lead to confusion, especially when an attribute and
a local variable or parameter have the same name, and makes the code harder to understand
and maintain. In this book, whenever we refer to an attribute from within its class definition,
we will always use the dot operator preceded by the class name for static attributes and the
dot operator preceded by this for non-static ones.

32 Franck van Breugel and Hamzeh Roumani

The key difference between utility and non-utility classes derives from the fact that state (i.e.
the values of all the attributes) plays a key role in the functionality and purpose of a non-utility
class.

2.2.3 The Constructor Section

The constructor of a class is invoked whenever the class is instantiated (i.e. whenever the new

operator is used) and its job is to initialize the state (i.e. the attributes) of the created object.
In order to provide versatility and convenience to the client of the class, several constructors may
appear in the API of the class and their definitions comprise the constructor section of the class
definition.

The definition of a constructor starts with a header with the following general form:

access signature

The access modifier can be either private or public.2 The signature consists of the name of the
constructor, which has to be the same as the name of the class, followed by the parameter list. If
the constructor is public, we can copy and paste the header as-is from the API of the class.

As an example, the default constructor of our Rectangle class is implemented as follows.

1 public Rectangle()

2 {

3 this.width = 0;

4 this.height = 0;

5 }

Note how this is used to refer to the object the attributes of which are being initialized.
Similarly, we implement the two-parameter constructor of the Rectangle class as follows.

1 public Rectangle(int width, int height)

2 {

3 this.width = width;

4 this.height = height;

5 }

Note that within the body of the constructor, width refers to the parameter of the constructor,
whereas this.width refers to the attribute of the object under construction.

Consider the following fragment of client code.

1 int width = 1;

2 int height = 2;

3 Rectangle rectangle;

4 rectangle = new Rectangle(width, height);

After the execution has reached the end of line 3, memory can be depicted as follows.

2The access modifier in Java can also be protected, which makes the constructor visible only to subclasses of this
class, or can be left blank, which makes the constructor visible only to classes in the same package as this class.

August 25, 2010 33

...
100 Client.main invocation

width 1
height 2

rectangle

200 Rectangle class
...

The execution of line 4 can be split into three parts:

• the allocation of a block of memory for a Rectangle object,

• the execution of the two-parameter constructor of the Rectangle class to initialize the
Rectangle object, and

• the assignment of the value of the created Rectangle object, i.e. its memory location, to the
variable rectangle.

In the first part, a block of memory is allocated for the new Rectangle object. This can be reflected
in our memory diagram by adding the following.

...
300 Rectangle object

width

height
...

In the second part, the two-parameter constructor is invoked. This invocation gives rise to an
invocation block. This invocation block not only contains the parameters width and height and
their values, but also the implicit parameter this and its value. Recall that the value of this is
the reference to the object on which the constructor is invoked. In this case, it is 300.

...
400 Rectangle invocation

this 300
width 1
height 2

...

As a result of the execution of the constructor, the state of the Rectangle object is initialized. For
example, execution of the assignment

1 this.width = width;

34 Franck van Breugel and Hamzeh Roumani

amounts to assigning the value of the parameter width, which is 1 according to the invocation
block, to the attribute width of the object referred to by this, which is the object at address 300
according to the invocation block. After the constructor returns, the above invocation block is
deleted from memory and the block of the Rectangle object now has the following content.

...
300 Rectangle object

width 1
height 2

...

In the third and final part, the local variable rectangle is assigned its value. As a consequence,
the invocation block of the main method can now be depicted as follows.

...
100 Client.main invocation

width 1
height 2

rectangle 300
...

Finally, we implement the one-parameter constructor shown in the API. This so-called copy

constructor3 enables the client to create a copy of a Rectangle object by simply passing that
object as an argument, rather than passing the width and height individually as arguments.

1 public Rectangle(Rectangle rectangle)

2 {

3 this.width = rectangle.width;

4 this.height = rectangle.height;

5 }

Note how this constructor initializes the state of this rectangle instance using the state of the
passed rectangle. Note also that we can access the attributes of the passed instance even though
they are private. This is because privacy is a class issue, not an object issue, i.e. there is no privacy
across objects belonging to the same class. Note also that we could have used the public accessors
of the passed instance instead of using the attributes directly, i.e.

1 public Rectangle(Rectangle rectangle)

2 {

3 this.width = rectangle.getWidth();

4 this.height = rectangle.getHeight();

5 }

3In Java, objects can also be copied using the clone method. Since most other object oriented programming
languages also support copy constructors, but mostly do not provide a clone method, we will restrict our attention
to copy constructors in this book.

August 25, 2010 35

The two approaches are similar but, as we will see later in this chapter, the second one leads to
code that is scalable and easier to understand and maintain.

If we define a class and we do not include any constructor (neither public nor private), then a
default constructor, i.e. one that takes no arguments, is added by the compiler. This constuctor is
only added if the class does not contain any constructor at all. In this constructor, the attributes
are initialized to the default values.

2.2.4 Defining Methods

The method section of the class definition contains one definition per method. The method header
has the following general form:

access type signature

As in the case of attributes, the access modifier can be either public or private.4 Recall that
the type is either void or the actual type of the return. Recall also that the method’s signature

consists of its name followed by its parameter list.
Which methods appear in the method section of a class definition depends of course on the class

and its functionality. Nevertheless, there are common themes such as state-related methods (acces-
sors and mutators), obligatory methods that override those of the Object class (such as toString,
equals, and hashcode), interface-related methods (such as compareTo), and class-specific methods
(such as getArea and scale). Let us take a look at some of these general themes and examine the
implementation of each in the Rectangle class.

Accessors

An accessor enables the client of the class to gain access to the value of one of the (otherwise
invisible) attributes of an instance of the class. For example, the getWidth accessor in Rectangle

returns the value of the width of the rectangle on which the method is invoked. Hence, it is
implemented as follows.

1 public int getWidth()

2 {

3 return this.width;

4 }

It is common to name the accessor of attribute x as getX() unless the type of x is boolean. If the
type of x is boolean, then the name isX() is generally used for the accessor of x.

Mutators

A mutator enables the client to modify, or mutate, the value of one of the attributes of an instance
of the class. For example, the setWidth mutator in Rectangle changes the width of the rectangle
on which it is invoked to the passed value. Hence, it is implemented as follows.

4The access modifier in Java can also be protected, which makes the method visible only to subclasses of this
class, or can be left blank, which makes the method visible only to classes in the same package as this class.

36 Franck van Breugel and Hamzeh Roumani

1 public void setWidth(int width)

2 {

3 this.width = width;

4 }

It is common to use the name setX for the mutator of the attribute x. The mutator receives the
new value for x as an argument.

Based on the requirements, the API designer determines if an attribute should have only an
accessor (read-only), only a mutator (write-only), both an accessor and a mutator (read-write), or
neither.

The toString Method

It is highly recommended that each class overrides the toString method of the Object class,
because its return (a class name and an address) is usually not useful. In a typical API design, the
method should return a textual representation of the object on which it is invoked, e.g. its name or
elements of its state. For example, the toString method in Rectangle class returns a string that
identifies the object as an instance of the Rectangle class and provides its width and height:

Rectangle of width 1 and height 2

The method can be implemented as follows.

1 public String toString()

2 {

3 return "Rectangle of width " + this.width + " and height " + this.height;

4 }

The equals Method

It is also highly recommended that each class overrides the equals method of the Object class,
because its return is based on the equality of memory addresses (i.e. two objects are equal if and only
if they have the same memory address). Typically, the equals method should compare the states
of the objects, rather than their memory addresses. For example, two rectangles are considered
equal if they have the same height and the same width. Whatever the definition of equality is, the
equals method must satisfy the following properties:

• reflexive: x.equals(x) returns true for any x different from null,

• symmetric: x.equals(y) returns true if and only if y.equals(x) returns true for all x and
y different from null,

• transitive: if x.equals(y) returns true and y.equals(z) returns true then x.equals(z)

returns true for all x, y and z different from null,

• x.equals(null) returns false for all x different from null.

August 25, 2010 37

One of the peculiarities of the equals method is that its parameter is of type Object. Consider,
for example, our class Rectangle. If the parameter of the equals method were of type Rectangle,
then this equals method would not override the equals method of the Object class (in that case,
the Rectangle class would have two equals methods).

Since the parameter of the equals method is of type Object, we must first ensure that the
passed argument is of the same type as the class being implemented. This can be done in two
ways: either using the getClass method or exploiting instanceof. We will always take the former
approach. Later in this book, we will discuss why using the getClass method is better than
exploiting instanceof.

An instance of the class Class, which is part of the package java.lang, represents a class.
For each class, there is a unique instance of the class Class that represents it. For example,
there exists a unique Class object that represents the Rectangle class. Given a Rectangle

object named rectangle, we can get the Class object that represents the Rectangle class by
rectangle.getClass(). Since each class is represented by a unique Class object, we can use
x.getClass() == y.getClass() to test if x and y are instances of the same class.

If the passed object is of the same type as the object on which the equals method is invoked,
then we can compare the states of the object. For example, for the Rectangle class the equals

method can be implemented as follows.

1 public boolean equals(Object object)

2 {

3 boolean equal;

4 if (object != null && this.getClass() == object.getClass())

5 {

6 Rectangle other = (Rectangle) object;

7 equal = (this.width == other.width) && (this.height == other.height);

8 }

9 else

10 {

11 equal = false;

12 }

13 return equal;

14 }

Note that we first had to ensure that the parameter is not null. Otherwise, the invocation
other.getClass() may give rise to a NullPointerException.

One may wonder why we cast object to a Rectangle in line 6, since we already checked in
line 4 that object is a Rectangle. Since object is declared to be of type Object and the class
Object does not contain the attributes width and height, the compiler would report errors such
as

Rectangle.java: cannot find symbol

symbol : variable width

location: class java.lang.Object

equal = (this.width == object.width) && (this.height == object.height);

38 Franck van Breugel and Hamzeh Roumani

if object were not cast to a Rectangle (more precisely, if we were to remove line 6 and replace
other with object in line 7).

Note also the role played by the equal local variable: one could implement equals without it
but this would lead to multiple return statements in the method, which may make the code harder
to maintain. In this book, all non-void methods will have a single return statement at the very
end of their body.

We leave it to the reader to check that our equals method of the Rectangle class satisfies the
four properties mentioned above.

The compareTo Method

The API designer may want to impose an order relation on the instances of a class so that, for
example, a list of them can be sorted. To indicate that instances of the class C have such a natural

order, the class C is made to implement the Comparable<C> interface. This interface has a single
method which takes an instance of class C as its argument and returns in integer. It returns a
negative, zero, or positive integer depending on whether the instance on which it is invoked is
smaller, equal, or greater than the passed instance. The exact definition of “smaller” and “greater”
depends on the class but it must obey the following conditions:

• x.compareTo(y) returns 0 if and only if y.compareTo(x) returns 0,

• x.compareTo(y) returns a value smaller than 0 if and only if y.compareTo(x) returns a value
greater than 0,

• x.compareTo(y) throws an exception if and only if y.compareTo(x) throws an exception,

• if x.compareTo(y) returns a value smaller than 0 and y.compareTo(z) returns a value smaller
than 0 then x.compareTo(z) returns a value smaller than 0, and

• if x.compareTo(y) returns 0 and y.compareTo(z) returns 0 then x.compareTo(z) returns
0.

Furthermore, the definition in almost all APIs ensures that x.compareTo(y) returns 0 if and only
if x.equal(y) returns true.

The API of the compareTo method in Rectangle defines a rectangle as being smaller than
another rectangle if its width is smaller than the width of the other rectangle, or they share the
same width but the height of the first rectangle is smaller than the height of the other rectangle.
Based on this, the method can be implemented as follows.

1 public int compareTo(Rectangle rectangle)

2 {

3 int difference;

4 if (this.width != rectangle.width)

5 {

6 difference = this.width - rectangle.width;

7 }

August 25, 2010 39

8 else

9 {

10 difference = this.height - rectangle.height;

11 }

12 return difference;

13 }

Since the interface Comparable is generic, the compareTo method does not share the peculiarity of
the equals method in that its parameter is not of type Object, but of the same type as its class.
This is why its implementation is simpler as it neither has to use the getClass method nor has to
cast. Note also that the implementation does not have to validate the incoming parameter for null
even though the body will throw a NullPointerException in that case. This is because the API
of the Comparable class states that a NullPointerException must be thrown if the argument is
null (cf. third property above).

Besides implementing the compareTomethod, we also add implements Comparable<Rectangle>

to the header of the class.

Class-Specific Methods

The methods getArea and scale in the Rectangle class are examples of class-specific methods.

The getArea method returns the area of the rectangle on which it is invoked and can be
implemented as follows.

1 public int getArea()

2 {

3 return this.width * this.height;

4 }

The scale method takes a scale factor, which is a non-negative integer according to the pre-
condition, and scales the width and height of the rectangle on which it is invoked by that factor.
This method can be implemented as follows.

1 public void scale(int factor)

2 {

3 this.width = this.width * factor;

4 this.height = this.height * factor;

5 }

The complete class can be found by following this link.

2.2.5 Documenting a Class

Just like utility classes, non-utility classes have two types of documentation: internal (intended for
implementers) to explain how the class works, and external (intended for clients) to explain what

the class does. Both types are embedded in the class definition (rather than kept in separate files)
to ensure that code and documentation remain in synch.

http://www.cse.yorku.ca/~buildIt/code//2/Rectangle.java.txt

40 Franck van Breugel and Hamzeh Roumani

The javadoc utility is used to extract external documentation and format it as HTML. The
tags that we studied for utilities, including @param, @pre., @return, and @throws, apply as-is to
non-utility classes.

As an example, consider the width mutator of our Rectangle class. Its documenation can be
done as shown below.

1 /**

2 Sets the width of this rectangle to the given width.

3

4 @param width The new width of this rectangle.

5 @pre. width >= 0

6 */

7 public void setWidth(int width)

As we can see, generating an API for a non-utility class follows the exact same rules as those
for a utility class. This should not be surprising because the main difference between these two
types of classes is state, and state, being private, does not show up in any external documentation.

The completely documented class can be found by following this link.

2.2.6 Testing a Class

There are two main differences between testing a (non-utility) class and testing a utility class.
First of all, we also need to check that the constructors behave according to their specifications.
Secondly, for each non-static method, each test case not only consists of values for the parameters
but also a value for the implicit parameter this.

Since the class may have several constructors, our test app needs to be conducted using each of
them separately in order to test every possible path in the code, i.e. full white-box testing.

As an example, let us write a tester for the two-parameter constructor and the accessors of the
Rectangle class. According to its precondition, the two-parameter constructor only accepts widths
and heights that are greater than or equal to 0. Hence, we randomly generate two integers between
0 and, say, 100.

1 Random random = new Random();

2 final int MAX = 100;

3 int width = random.nextInt(MAX + 1);

4 int height = random.nextInt(MAX + 1);

Our test vector for the two-parameter constructor will consist of several, say 100, of such (width,

height) pairs. Next, we invoke the two-parameter constructor for each test case.

1 Rectangle rectangle = new Rectangle(width, height);

Finally, we combine the test case (width, height) with the created Rectangle object rectangle
into a triple (width, height, rectangle). This will be a test case for the accessors. Note that it
also includes a value for the implicit parameter this. We choose direct verification as our oracle.

http://www.cse.yorku.ca/~buildIt/code//2/Rectangle.java.txt

August 25, 2010 41

1 if (rectangle.getWidth() != width)

2 {

3 output.print("Either the two-parameter constructor or the method getWidth

failed the test case: ");

4 output.println("width = " + width + ", height = " + height);

5 }

6 if (rectangle.getHeight() != height)

7 {

8 output.print("Either the two-parameter constructor or the method getHeight

failed the test case: ");

9 output.println("width = " + width + ", height = " + height);

10 }

The full tester can be found by following this link.

2.3 Beyond the Basics

2.3.1 Avoiding Code Duplication

Generally, we try to avoid code duplication. Code containing duplicated fragments is usually more
difficult to maintain. Here, we focus on those fragments of code that involve the attributes. These
fragments may need to be changed when we decide to represent the state of an object in a different
way. For example, rather than using a pair of integers we may decide to represent the state of a
rectangle by means of a string consisting of the width and the height separated by a space. Having
no duplicated code will usually minimize the number of changes to the code. For those fragments
involving attributes we present three different techniques to avoid code duplication.

Constructor Chaining

Consider, for example, the work done by the default constructor of the Rectangle class.

1 public Rectangle()

2 {

3 this.width = 0;

4 this.height = 0;

5 }

We see that it initializes the attributes width and height to 0. This code is very similar to the
two-parameter constructor which also initializes the attributes width and height.

1 public Rectangle(int width, int height)

2 {

3 this.width = width;

4 this.height = height;

5 }

http://www.cse.yorku.ca/~buildIt/code//2/RectangleTester.java.txt

42 Franck van Breugel and Hamzeh Roumani

The default constructor can be seen as a special case of the two-parameter constructor. We can
avoid some code duplication by rewriting the default constructor so that it merely delegates to the
two-parameter constructor. As we have seen in Section 2.2.3, we store three pieces of information
in the invocation block: the values of the parameters width (0 in this case) and height(0 in this
case) and the value of the implicit parameter this. These three ingredients can be combined as
follows.

1 public Rectangle()

2 {

3 this(0, 0);

4 }

Consider the following fragment of client code.

1 Rectangle empty = new Rectangle();

Assume that the block for the new Rectangle object is allocated at address 200. Then the invo-
cation of the constructor gives rise to the following block in memory.

...
400 Rectangle invocation

this 200
...

The execution of the body of the default constructor gives rise to the invocation of the two-
parameter constructor, which is reflected by the following block in memory.

...
600 Rectangle invocation

this 200
width 0
height 0

...

Subsquently, the execution of the body of the two-parameter constructor results in the attributes
width and height of the Rectangle object at address 200 being set to zero.

Having one constructor delegating to another is known as constructor chaining. Similarly, we
see that our implementation of the copy constructor duplicates some code. Again we can exploit
constructor chaining to remove this redundacy.

1 public Rectangle(Rectangle rectangle)

2 {

3 this(rectangle.width, rectangle.height);

4 }

Hence, our first technique employs the this(...) construct to make all constructors delegate
to one. The Java compiler requires that the this(...) statement be the very first in the body of
a constructor.

August 25, 2010 43

Delegating to Mutators

Initially, we implemented the two-parameter constructor as follows.

1 public Rectangle(int width, int height)

2 {

3 this.width = width;

4 this.height = height;

5 }

Note that the above constructor duplicates the code of the mutators. Hence, we can rewrite this
constructor as follows.

1 public Rectangle(int width, int height)

2 {

3 this.setWidth(width);

4 this.setHeight(height);

5 }

After having applied these two techniques, none of the constructors directly access the attributes
and, hence, none is vulnerable to changes of the representation of those attributes. For example, if
we decide to change the representation of the attributes from a pair of integers to a string of two
integers separated by a space, then none of the constructors need to be refactored.

Delegating to Accessors

Our third technique ensures that attributes are only directly read in the accessors. For example,
we implemented the getArea method of the Rectangle class as follows.

1 public int getArea()

2 {

3 return this.width * this.height;

4 }

Direct references to the attributes make this method vulnerable to changes of the representation of
the attributes. We can therefore employ our third technique and rewrite the method as follows.

1 public int getArea()

2 {

3 return this.getWidth() * this.getHeight();

4 }

We can also apply this technique to the copy constructor. This results in the following con-
structor.

1 public Rectangle(Rectangle rectangle)

2 {

3 this(rectangle.getWidth(), rectangle.getHeight());

4 }

44 Franck van Breugel and Hamzeh Roumani

The refactored class can be found by following this link.

2.3.2 Immutable Objects

Consider the following snippet of client code.

1 String s = "yo";

2 s = s + s;

3 String t = "yoyo";

When the execution reaches the end of line 1, memory can be depicted as follows.

...
100 Client.main invocation
s 300
t

200 String class

300 String object
...

The state of the String object at address 300 reflects that this object represents the string
"yo". Somewhere in memory the characters ’y’ and ’o’ are stored. In line 2, the length of the
string is doubled. However, when we create a String object, we cannot always predict its maximal
length (it may, for example, depend on input provided by the user). No matter how big a memory
block we initially allocate for the String object, it may not be big enough and, hence, we may
have to allocate a new block. Assigning huge blocks of memory to String objects may be a waste
of memory. Therefore, whenever we want to change a string, we create a new String object. For
example, once the execution reaches the end of line 2, memory can depicted as follows.

...
100 Client.main invocation
s 500
t

200 String class

500 String object
...

Instances of the String class are immutable; i.e. once a String object is created, it can no longer
be changed. Methods such as substring and toUpperCase do not mutate the String object on
which they are invoked; they simply return a brand new String object.

http://www.cse.yorku.ca/~buildIt/code//2/RefactoredRectangle.java.txt

August 25, 2010 45

The class String is called immutable since its instances are. Wrapper classes such as Integer
and Double are other examples of immutable classes.

Since String objects are immutable, there is no need to create a new String object for the
variable t in line 3 of the above code snippet. Once the execution reaches the end of line 3, our
memory diagram looks as follows.

...
100 Client.main invocation
s 500
t 500

200 String class

500 String object
...

API designers may demand immutability either because of the nature of the class or, as is the
case for the String class, for efficiency reasons. Regardless, we need to be able to implement such
immutable classes.

As an example, assume that our Rectangle class is supposed to be immutable. At first glance,
we may be tempted to simply delete all its mutators. However, this may break other parts of the
implementation, in particular those parts that rely on (i.e. delegate to) these mutators. In fact,
recall that in Section 2.3.1 we avoided code duplication by delegating to mutators. Hence, rather
than deleting all mutators we can simply make them private. For example, the width mutator
remains as before except for its access modifier:

1 private void setWidth(int width)

2 {

3 this.width = width;

4 }

2.3.3 Attribute Caching

When we make design choices while we are identifying the attributes of our class, we often opt
for a minimal set of attributes that capture the state of an instance. For example, the state of a
Rectangle object involves a width and a height and this suggests using two integers as attributes.
The API of Rectangle does have a method named getArea. However, adding an attribute named
area, which holds the area of the rectangle, would lead to redundant information. This information
can easily be computed from the width and the height, as we do in the getArea method. There is
no need to treat it as part of the state; i.e. it needs not be computed and stored for every instance.

Generally, we try to keep the attributes independent (and thus minimal) because this is con-
sistent with the general principle of avoiding redundancy. There are situations, however, in which
a redundant attribute is kept because recomputing it requires extensive resources. This process is

46 Franck van Breugel and Hamzeh Roumani

known as caching the attribute value, and the attribute itself is known as a cache. As an example,
let us add the following (admittedly artificial) method to the API of our Rectangle class:

public int getGreatestCommonDivisor()

This method returns the greatest common divisor of the width and the height of a rectangle.
Rather than computing the greatest common divisor of the width and height everytime the method
getGreatestCommonDivisor is invoked, we cache it. That is, we introduce an attribute, say
greatestCommonDivisor.

1 private int greatestCommonDivisor;

The method getGreatestCommonDivisor simply returns the value of this attribute.

1 public int getGreatestCommonDivisor()

2 {

3 return this.greatestCommonDivisor;

4 }

Whenever the state of a rectangle changes, the value of the attribute getGreatestCommonDivisor
needs to be recomputed. Hence, this should be done in both mutators. To avoid code duplication,
we introduce a private method.

1 private void setGreatestCommonDivisor()

2 {

3 // assign to this.greatestCommonDivisor the greatest common divisor

4 // of this.width and this.height

5 }

This method is invoked in both mutators. For example, the mutator for the attribute width is
modified resulting in the following.

1 public void setWidth(int width)

2 {

3 this.width = width;

4 this.setGreatestCommonDivisor();

5 }

Note that this is an example of an attribute the accessor of which is public and the mutator of
which is private.

2.3.4 Class Invariants

We may want to document that a property about the state of each instance of a particular class
“always” holds. For example, we may want to express that the width and the height of a Rectangle
object are greater than or equal to 0. Such a property can be documented as a class invariant. A
class invariant is a predicate involving the attributes of the class. For example, the class invariant
that expresses the width and the height of a Rectangle object to be greater than or equal to 0 can
be documented as follows in the class Rectangle.

August 25, 2010 47

1 /* Class invariant: this.width >= 0 && this.height >= 0 */

Note that the above is not a documentation comment and, hence, will not show up in the API.
A class invariant has to satisfy the following two constraints.

• The class invariant has to be true after each public constructor invocation, provided that
the client ensures that the precondition of the invoked constructor is met. That is, if the
class invariant holds when the method is invoked and the precondition of the method holds
as well, then the class invariant also holds when the method returns.5 Let us check this
constraint for the above class invariant. Obviously, the width and the height of a Rectangle

object are greater than or equal to 0 when it is created by the default constructor. If we
create a Rectangle object using the two-parameter constructor, then the precondition of this
constructor implies that the width and the height are greater than or equal to 0. Finally,
assume that we create a Rectangle object by means of the copy constructor. From the class
invariant we can infer that the width and the height of the Rectangle object that is provided
as an argument to the copy constructor are greater than or equal to 0. Hence, also the width
and the height of the created Rectangle object are greater than or equal to 0.

• The class invariant has to be maintained by each public method invocation, provided that
the client ensures that the precondition of the invoked method is met. Again, let us check
this constraint for the above class invariant. Obviously, we only have to consider those public
methods that change the attributes width or height. Hence, we only have to consider the
methods setWidth, setHeight and scale. For the mutators, the preconditions imply that
the new width and the new height are greater than or equal to 0. Finally, let us consider
the scale method. To check that this method maintains the class invariant, assume that
the class invariant holds, i.e. the width and height are greater than or equal to 0, and its
precondition is met, i.e. factor ≥ 0. Then, the new width and the new height are of course
also greater than or equal to 0.

While testing a (non-utility) class, we may want to check that the class invariant holds after
each invocation of a public constructor and is maintained by each invocation of a public method.

2.3.5 The hashCode Method

One of the obligatory methods that every class inherits (or overrides) from the Object class is
the hashCode method. It returns an integer that acts as an identifier for the object on which
the method is invoked. A hashCode method implements a hash function, which maps objects to
integers, and the method is used in classes such as HashSet and HashMap. Full treatment of hash
functions is beyond the scope of this book.

In whatever way we map objects to integers, the hashCode method has to satisfy the following
property:

• if x.equals(y) returns true then x.hashCode() and y.hashCode() return the same integer
for all x and y different from null.

5The class invariant does not need to hold continuously when the body of the method is executed.

48 Franck van Breugel and Hamzeh Roumani

The opposite is not required, i.e. if two objects are unequal according to the equals method,
then the hashCode method need not return distinct integers. However, we should be aware that
returning distinct integers for unequal objects may improve the performance of methods in classes
such as HashSet and HashMap.

For the wrapper class Integer, the hashCode method can be implemented as follows.

1 public int hashCode()

2 {

3 return this.value;

4 }

where the attribute value hold the int value of the Integer object. In this case, the hashCode

maps two objects to the same integer if and only if the objects are the same according to the
equals method. However, such a one-to-one correspondence is not always possible. For example,
the wrapper class Double has 264 different instances, but there are only 232 different integers.

Now let us return to our Rectangle class. Let us first choose not to implement it (i.e. use the
one inherited from Object) and consider the following client fragment:

1 Set<Rectangle> set = new HashSet<Rectangle>();

2 set.add(new Rectangle());

3 set.add(new Rectangle());

4 output.println(set.size());

Since the two added rectangles are equal, one expects the set to have only one element because sets
keep only distinct elements. This fragment, however, leads to both elements being added to the
set; i.e. the set will consist of elements that are deemed equal by the equals method! This example
shows that it is critical to override the hashCodemethod and ensure that its implementation satisfies
the above mentioned property.6 For our Rectangle class, we can implement the hashCode method
as follows.

1 public int hashCode()

2 {

3 return this.getWidth() + this.getHeight();

4 }

This ensures that when invoked on two rectangles of equal width and height, the method returns
the same integer. Such an implementation meets the equality requirement and will indeed cause
the above client fragment to store one and only one element in the set. It does not, however, meet
the one-to-one correspondence. For example, the rectangle with width 2 and height 3 and the
rectangle with width 4 and height 1 both return the same hash code, namely 5, even though they
are different rectangles. Also in this case, no one-to-one correspondence is feasible since there are
262 different rectangles, but only 232 different integers.

6The hashCode method of the Object class satisfies the property with respect to the equals method of the Object
class. Since we did override the equals method in the Rectangle class, we also have to override the hashCode method.

August 25, 2010 49

2.3.6 Validation and the Implementer

As we have already seen in Section 1.4.2, the implementer can validate the input to a method in
different ways. Here, we revisit this topic for the mutator of the attribute width. In the original
API of the Rectangle class, the parameter width is restricted to a non-negative integer by means
of a precondition. Next, we present two alternative designs.

As in Section 1.4.2, instead of a precondition, we can use an exception. In this case, we throw
an IllegalArgumentExceptionwhenever the value of the parameter width is smaller than 0. This
can be implemented as follows.

1 public void setWidth(int width) throws IllegalArgumentException

2 {

3 if (width < 0)

4 {

5 throw new IllegalArgumentException("Argument of setWidth method cannot

be negative");

6 }

7 else

8 {

9 this.width = width;

10 }

11 }

This method can be documented as follows.

1 /**

2 Sets the width of this rectangle to the given width.

3

4 @param width The new width of this rectangle.

5 @throws IllegalArgumentException if width < 0.

6 */

The above documentation comment and the method header give rise to the following snippet of
the API.

setWidth

public void setWidth(int width)

 throws IllegalArgumentException

Sets the width of this rectangle to the given width.

Parameters:

width - The new width of this rectangle.
Throws:

IllegalArgumentException - if width < 0.

50 Franck van Breugel and Hamzeh Roumani

As an alternative, we may decide to set the attribute width to its new value only if that value
is non-negative. Whether the attribute is set to a new value is returned to the client in the form of
a boolean. This alternative design can be implemented as follows.

1 public boolean setWidth(int width)

2 {

3 boolean isSet = width >= 0;

4 if (isSet)

5 {

6 this.width = width;

7 }

8 return isSet;

9 }

This method can be documented as follows.

1 /**

2 Sets the width of this rectangle to the given width if

3 the given width is greater than or equal to 0. Returns

4 whether the width has been set.

5

6 @param width The new width of this rectangle.

7 @return true if width <= 0, false otherwise.

8 */

The above documentation comment and the method header give rise to the following snippet of
the API.

setWidth

public boolean setWidth(int width)

Sets the width of this rectangle to the given width if the given width is greater than or equal to 0.
Returns whether the width has been set.

Parameters:

width - The new width of this rectangle.
Returns:

true if width <= 0, false otherwise.

2.3.7 Check your Understanding

Refactor the Rectangle class in the following ways.

August 25, 2010 51

• Instead of using a pair of integers to represent the state of a rectangle, use a string consisting
of the width and the height separated by a space. For example, a rectangle with width 1 and
height 2 is represented by a single attribute the value of which is "1 2".

• Instead of using a pair of ints to represent the state of a rectangle, use a long. For example,
a rectangle with width 1 and height 2 is represented by a single attribute the value of which
is 1× 232 + 2.

52 Franck van Breugel and Hamzeh Roumani

