Chapter 1

Implementing Static Features

1.1 Introduction

1.1.1 What are Utilities?

Recall that a class is an entity that has attributes and methods. Most classes cannot be used unless
they are instantiated first. The instantiation process creates copies of the class attributes, and this
allows different instances to have different attribute values, i.e. different states.

But what if a class has no attributes at all; i.e. its instances are stateless? Or, what if all
instances of a class have the same attribute values, i.e. the same state? In both cases, there is no
need to create instances because doing so would waste valuable resources. Such a class is called a
utility, and in it, the attributes are associated with the class itself, not with instances. Indeed, we
cannot instantiate a utility and we will not find a constructor section in its API.

In Java, we recognize a utility from its API by noting that all its features (both attributes and
methods) are static.

Since a utility cannot be instantiated, its client must access its public attributes and invoke its
public methods by using the class name. As an example, consider the Math utility whose API is
shown herel and which is a simplified version of the one in the package java.lang. The following
fragment shows how a client can use this utility.

1 output.println("The value of PI is: " + Math.PI);

3 output.println("Enter two integers:");

4+ int a = input.nextInt();

5 int b = input.nextInt();

¢ output.println("The smaller of the two entries is: " + Math.min(a, b));

s output.println("Enter a base and an exponent:");

9 int base = input.nextInt();

10 int exponent = input.nextInt();

11 output.println("The entered power is: " + Math.pow(base, exponent));

http://www.cse.yorku.ca/~buildIt/api//1/Math.api/Math.html

2 Franck van Breugel and Hamzeh Roumani

The full example can be found by following [this| link.

1.1.2 Why are Utilities Needed?

A utility is used in situations in which there is no need to have multiple copies of the class features;
i.e. a single copy suffices. For example, a class that does not hold any state (i.e. has no attributes)
is a good candidates for a utility. A class without attributes has no state so it cannot remember
anything about previous invocations, e.g. which method was invoked last, when was a method
invoked, or what arguments were passed before. A method in such a class has therefore nothing to
work with other than the arguments passed to it, and its return (if any) must depend only on the
values of these arguments. A second example of a class that is appropriate for a utility is one that
has a fixed state (i.e. all its attributes are static and final).

It should be noted that most, if not all, classes that make up a real-life application are not
utilities. We start with utilities because they are simpler than non-utilities. Moreover, the skills
we will acquire in implementing them apply as-is to non-utility classes.

1.1.3 UML and Memory Diagrams

The Unified Modeling Language (UML) allows us to represent utilities through diagrams. A minimal
UML class diagram consists of a rectangular box that contains the name of the class preceded by the
word wutility between two guillemets, as shown below. The class name can be fully qualified, with
its package and sub-package names, but with a double-colon (rather than a dot) as the separator
character.

((utility))
java::lang: :Math

If additional features need to be exposed then a second (and a third) box can be added to hold
the attributes (and methods) of the utility, as shown below. The + sign appearing before a feature
indicates that the feature is public.

((utility))
java::lang: :Math
+ E: double
+ PI: double

((utility))
java::lang: :Math
E: double
PI: double
abs(int): int
abs(double): double
pow(int, int): int

+ o+ |+ o+

http://www.cse.yorku.ca/~buildIt/code//1/MathClient.java.txt

August 25, 2010 3

In addition to UML diagrams, we sometimes use memory diagrams to show how different classes
reside in memory. For example, the memory diagram below contains two class blocks representating
the client class named MathClient residing in memory beginning at address 64 and the Math utility
at address 800. The addresses used in the figure are of course arbitrary.

64 | MathClient class

800 Math class

More details can be provided in these memory diagrams. For example, in the memory diagram
below the class block of the Math utility also contains the constants E and PI. Furthermore, this
more detailed memory diagram contains an invocation block representing the invocation of the
main method of the MathClient class. This diagram models memory after the user has entered
the values 3 and 7 but before the user has entered the values for the base and exponent.

0
1
64 MathClient class
800 Math class

E | 2.718281828459045
PI | 3.141592653589793

940 | MathClient.main invocation

a3

b|7
base
exponent

1.1.4 Check your Understanding

Consider the following classes:
e Arrays in the java.util package,

e DocumentBuilderFactory in the javax.xml.parsers package,

4 Franck van Breugel and Hamzeh Roumani

e Collections in the java.util package and
e InputStream in the java.io package.

If you attempt to use the typical new keyword to instantiate any of these classes, you will find that
the attempt will fail. Does this mean that these classes are utilities? Argue that only two of them
are utilities.

1.2 How: The Class Definition of a Utility

1.2.1 Class Structure

Implementing a utility means writing its so-called class definition. Here is the general form:

1 // any needed package statement
> // any needed import statements

4 public class SomeName

5 1

6 // the attribute section

7

8 // the constructor section
9

10 // the method section

11 }

The definition starts with a package statement if this class belongs to a named package. This is
then followed by any needed import statements as is the case of client apps. The body of the
class has three sections, one for attributes, one for constructors, and one for methods, which is
reminiscent of the API structure. These three sections may appear in any order but, as a matter
of style, we will adhere to the above order.

1.2.2 Declaring and Initializing Attributes

The state of a utility is held in its attributes. If a utility does not have state, the attribute section
is omitted. Otherwise, it contains one definition per attribute. The definition has one of the two
following general forms:

access static type name = value;
or
access static final type name = value;

It should not be surprising that the keyword static is present; after all, we are studying utilities in
this chapter and all features in a utility are static. Here is an explanation of each of the remaining
elements:

August 25, 2010 5

e access (also known as the access modifier) can be either public, which means this is a field, or
private, which means it is invisible to the client. [It is a key software engineering guideline
to keep all non-final attributes private. First of all, it forces the client to use a mutator and,
hence, prevents the client from assigning wrong values to them, e.g. assigning a negative value
to a field intended to hold the age of a person. Secondly, private attributes do not show up
in the API and, hence, declaring attributes private (rather than public) simplifies the API.
Finally, since private attributes do not show up in the API, their type and name can be
changed by the implementer without introducing any changes to the API.

e final (appearing in the second general form above) is used if this attribute is a constant.
e type specifies the type of this attribute. It can be primitive or non-primitive.

e value specifies the initial value of this attribute and should be compatible with its type; i.e.
this should be a valid assignment statement.

Here is an example:

1 public class Math
2 {
3 public static final double PI = 3.141592653589793;

6
When we define attributes in a utility, we should keep two things in mind:

e It is best to initialize attributes as we declare them. If we delay or forget their initialization,
the compiler will not issue a compile-time error; it will simply assign default values to them.
Relying on such defaults is not a good idea because they may change from one version of the
language to the next. Furthermore, explicit declaration mitigates assumption risks (scenarios
in which people make implicit assumptions and do not communicate them, thinking they are
obvious), which can lead to logic errors.

e The scope of an attribute is the entire class.
Finally, even though attributes have types and hold values, they are different from local variables.

1.2.3 The Constructor Section

The constructor section of a utility named SomeName consists of a single statement:

The access modifier in Java can also be left blank. This makes the attribute visible only to classes in the same
package as this class (more on this later).

2Local variables can appear only within the definition of a method or a constructor, and their scope is limited
to the definition in which they appear. In addition, local variables must be initialized before being used; i.e. the
compiler does not assign default values to them.

6 Franck van Breugel and Hamzeh Roumani

1 private SomeName(){}

It is not surprising that the constructor has the same name as the class but this code looks rather
odd: why is the constructor private and why is it empty? And if it is meant to be empty then why
is it included at all in the definition?

Recall that utilities are never instantiated, and hence, there should not be a constructor section
in their APIs. This implies that there should not be any public constructor in the class definition
of a utility. But when the Java compiler encounters a class without any constructor at all, it
automatically adds a public constructor to it. To prevent this from happening, we add the above
private constructor. Its body is empty because we really do not need a constructor; it is there only
to thwart the compiler’s attempt at adding a public one.

Based on this, the class definition of our example utility becomes:

1 public class Math
2 {
3 public static final double PI = 3.141592653589793;

5 private MathO{}

1.2.4 Defining Methods

The method section of the class definition of a utility contains one definition per method. The
method header has the following general form:

access static type name parameter-list
or
access static type name parameter-list throws type

As in the case of attributes, it should not be surprising that the keyword static is present. And
also as for attributes, the access modifier can be either public or private. [1 Recall that the return
type is either void or the actual type of the return.

Let us look at some of the methods of the Math class. Consider min(int, int), which returns
the smaller of its two arguments. It is a public method with a return type of int. Hence, its
definition must have the following header:

1 public static int min(int a, int b)

3The access modifier in Java can also be left blank. This makes the method visible only to classes in the same
package as this class (more on this later).

August 25, 2010 7

When a client program invokes this method by writing something like Math.min(3, 5), control
is transferred to the method with a initialized to 3 and b initialized to 5. The body of the method
does the real work. It should figure out which parameter (a or b) is smaller and return it to the
client. Returning the result to the client is expressed by means of the return statement. This
statement consists of the keyword return followed by an expression. The type of the expression
should be compatible with the return type of the method. The execution of the return statement
results in the value of the expression being returned to the client. Here is a possible implementation
of the min method:

1 int min;
2 if (a <= b)

3 q

4 min = a;
5 F

6 else

7 q

8 min = b;
9 F

10 return min;

In fact, we can implement this functionality in one statement:

1 public static int min(int a, int b)

2 A{
3 return (a <= b) ? a : b;
4 ¥

Next, let us look at the pow method. It is a public method that takes two int arguments and
return an int (being the first argument raised to the second). Hence, its definition must have this
layout:

1 public static int pow(int a, int b)

In the body of this method we must compute and return aP, i.e.

axax---Xa
N—_———

b times

To do this, we need to set up a loop. And since we know how many times the loop should iterate,
we use a for loop:

1 int pow = 7
2 for (int i = 0; i < ?; i++)

3 {

8 Franck van Breugel and Hamzeh Roumani

4 pow = pow * a;
5 F

6 return pow;

Next, we need to determine the initial value of the local variable pow and the number of iterations of
the loop. A loop invariant can help us do this. Recall that a loop invariant is a boolean expression
that holds at the beginning of every iteration. It usually tells us something about the variables that
play a key role in the loop. In the above loop, the variables pow and i play a key role. They are
related as follows: pow = a'. We will take this as our loop invariant. Now we can determine the
initial value of pow. Since the loop invariant has to hold at the beginning of the first iteration of the
loop and since i is initialized to 0, we can conclude that we have to initialize pow to 1 since a’ = 1.
The loop invariant also tells us when to exit the loop. We want to end the loop if pow = aP. So
when we reach an iteration at which i = b, the loop condition should evaluate to false. Therefore,
as long as i !'= b (or i < b) we should continue the loop. The complete implementation of our
Math utility can be found by following this| link.

1.2.5 Testing a Utility

In order to test a utility we need to write a client class, i.e. an app, that invokes every method in it
and verifies that it behaves according to its specification. In the lingo of the software development
process such a test is known as a unit test as opposed to an integration test, which is performed
after all classes in the application have been built.

Testing a method in a utility involves generating a test vector (a collection of test cases that meet
the precondition of the method) and then invoking the method for each test case. The method’s
return is then checked against an oracle to ensure that the method’s postcondition is met[]

As an example, let us write a unit test for our Math class and let us focus only on its min(int,
int) method. Since any int is a valid argument for this method, we will use the nextInt () method
of the java.util.Random class to generate random arguments that are uniformly distributed over
the entire int range. The following fragment demonstrates this step:

1 Random random = new Random() ;
2 int a = random.nextInt();
3 int b = random.nextInt();
4 int min = Math.min(a, b);

Our test vector will thus consist of several, say 100, of such (a,b) pairs.
The next step involves determining if the method satisfies its postcondition; i.e. if min is indeed
the smaller of a and b. We will choose direct verification as our oracle:

1 if (a < min || b <min || (a != min & b !'= min))

2 {

3 output.print("The method failed the test case: ");
4 output.println("a =" + a + ", b =" + b);

“In general, one must also ensure that the values of all fields remain consistent with the class invariant. But since
most utilities do not have non-constant fields, we will ignore this part of the test.

http://www.cse.yorku.ca/~buildIt/code//1/Math.java.txt

August 25, 2010 9

5

The above process is repeated for each of the remaining test cases in our test vector. The full tester
can be found by following [this| link.

1.2.6 Check your Understanding
Write a utility that contains the method:

1 public static long factorial(int n)

The method computes and returns the factorial of the given integer. The return is a long (rather
than an int) because the factorial function grows rapidly and quickly exceeds the int range. You
can safely assume that the passed integer is not negative (we will see later in this chapter how to
better handle this condition). Test your implementation using the integers [0,20] as test vector
and your calculator as oracle.

1.3 Arguments versus Parameters

1.3.1 Passing Arguments By Value

Object-oriented programming aims at creating a layer of separation between the client’s code and
the implementer’s code in order to reduce their complexities. The client’s code and the imple-
menter’s code cannot operate in total isolation, however, because they need to cooperate through
method invocation. Hence, a mechanism needs to be in place to facilitate such cooperation without
allowing either party to modify the variables of the other party without their explicit knowledge.
This mechanism is known as pass-by-value. We examine it from the client’s view in this section
and look at its impact on the implementer in the next section.
Consider the following fragment of client code that invokes the abs method of the Math class.

1 int x = -1;
2 int y = 0;
3 y = Math.abs(x);

Having reached the beginning of line 3, our memory model contains the following invocation block.

156 | Client.main invocation
x| —1
y |0

Assume that the implementer’s code of the abs method is the following.

1 public static int abs(int a)

2 o

http://www.cse.yorku.ca/~buildIt/code//1/MathTester.java.txt

10 Franck van Breugel and Hamzeh Roumani

3 int abs;

4 if (a < 0)
5 {

6 abs = -a;
7 }

8 else

9 {

10 abs = a;
11 }

12 return abs;
13 }

Once the abs method is invoked, an invocation block is added to our memory diagram. When
the invocation reaches the beginning of line 12 of the abs method, our memory diagram looks as
follows.

156 | Client.main invocation
x| —1
y |0

244 Math.abs invocation
a| —1
abs | 1

Note that x and a live at different memory locations. When the abs method is invoked, the value of
x (not its memory location) is passed. Hence, the name pass-by-value. As a consequence, changes
to a have no impact on x.

What were the values of the client variables x and y before the invocation and what are their
values afterwards? The value of y was 0 and it has become 1. Hence, the invocation did result in
a change in the client’s data but this change did not take place implicitly or secretively; the client
asked for it (through an assignment statement) and was fully aware of its consequence (through the
method’s postcondition). As for x, its value was —1 prior to the invocation. If this value were to
change afterwards then this would be an implicit change that would take place without the client’s
knowledge. Fortunately, the pass-by-value mechanism prevents that; i.e. the value of x remains —1
after the invocation regardless of how abs is implemented.

In general, the comma-separated entities that appear between two parentheses after the method
name in an invocation statement are known as arguments. Hence, x in the above invocation is an
argument. The fact that the values of the arguments (and not their memory locations) are passed
to the implementer guarantees that the arguments remain intact no matter what the implementer
does.

It is important to know that the pass-by-value mechanism remains in force even if the argument
is an object reference. In other words, an object reference argument is guaranteed not to change

August 25, 2010 11

after an invocation (but the object to which it refers might). Let us look at an example that
illustrates this point: assume that there is a utility called Doubler with the method:

1 public static void twice(Rectangle x)

The method takes a reference to a Rectangle object and doubles the sizes of the rectangle’s width
and height. The API of the Rectangle class can be found following this link. Here is a fragment
of a client app that creates a Rectangle with width 3 and height 4 and then invokes the above
method:

1 Rectangle r = new Rectangle(3, 4);
2 Doubler.twice(r);

In this example, the client passes the argument r to the method. Based on our understanding of the
pass-by-value mechanism, the method cannot change r but it can change (mutate) the Rectangle
to which r points.

64 | Client.main invocation 64 | Client.main invocation
r | 100 r | 100
100 Rectangle object 100 Rectangle object
width | 3 width | 6
height | 4 height | 8

The memory diagram above assumes that the Rectangle object resides in a memory block that
starts at address 100. The diagram shows that the value of r was 100 before the invocation and
remained 100 after it, as expected. The object itself was mutated as evidenced by the doubling of
its sides. The fact that the object was changed does not contradict the pass-by-value mechanism
because the object itself is not an argument; its reference is.

1.3.2 Initializing Parameters

We saw in the previous section that the pass-by-value mechanism allows the client to establish a
one-way communication channel with the implementer. The client uses this channel to pass the
values of the arguments to the implementer knowing that these values cannot change upon return.
We now look at this mechanism from the implementer’s side.

The implementer uses the term parameters to refer to the variables that appear between paren-
theses in the method header. For example, the header of the twice method that was introduced
in the previous section contains one parameter named x:

1 public static void twice(Rectangle x)

5Recall that an object is a cluster in memory that belongs to neither the client nor the implementer. Programs
can own object references, and they can make the references point at an object, but they do not own objects.

http://www.cse.yorku.ca/~buildIt/api//1/Rectangle.api/Rectangle.html

12 Franck van Breugel and Hamzeh Roumani

We see that parameters are declared in the header but how are they initialized? The pass-by-value
mechanism states that parameters are initialized to the passed values of the arguments. Hence, the
parameter x in the above header will have 100 as its initial value (see memory diagram) because
this is the value of the argument passed by the client. We can see how the one-way channel is
implemented: since the client and the implementer are using two distinct sets of variables linked
only through initialization, it is clear that the implementer cannot possibly modify any of the
client’s arguments.

Let us now implement the twice method. We need to determine the sides of the passed
Rectangle and double them. Here is the implementation:

1 public static void twice(Rectangle x)

2 {

3 x.setWidth(2 * x.getWidth());

4 x.setHeight(2 * x.getHeight());
5}

Note that the method receives the value of the object reference (i.e. the address of the object in
memory) and then mutates the object (i.e. changes its state in place); it does not change the address
of the object in memory.

As a second example of the impact of pass-by-value on the implementer, suppose a client writes
a main method containing the following code snippet.

1 int x = 1;
2 int y = 2;
3 Util.swap(x, y); // swaps the values of x and y

The implementer is asked to write the method swap that allows its client to swap two int values:

1 public static void swap(int a, int b)

2 A
3 ?
4 ¥}

The pass-by-value mechanism makes implementing this method impossible! No matter how the
values of the two parameters a and b are interchanged, the arguments will not be affected.

1.3.3 Attribute Shadowing

We saw in the previous section that parameters are declared in the header of the method and are
initialized using the passed values of the arguments. Hence, they behave like local variables and
have a scope that extends from the very beginning of the method (its opening brace) to its end
(its closing brace). Recall that attributes are declared outside all methods and that their scope
encompasses the entire class. This raises a question: what if one of the parameters of a method in
a class happens to have the same name as an attribute of that class? For example, a utility Util
may have an attribute named count and the method:

1 public static void increment(int count)

August 25, 2010 13

2 A{

3 count = count + count;
4

5

Which count is being referenced here, the attribute or the parameter? Java in this case gives the
priority to the parameter; i.e. the parameter shadows the attribute (hides it). The above method
will therefore double the value of its parameter, not the attribute. This situation is clearly confusing
and can lead to logic errors. Because of this, we will, as a matter of style, always use the utility
name when we refer to its attributes. Hence, if the above method were meant to increment the
class attribute by the value of the parameter, its code should have been written as follows:

1 public static void increment(int count)

2 A{

3 Util.count = Util.count + count;
4

5 F

1.3.4 Method Overloading and Binding

The argument-parameter mapping dictates how the compiler should bind an invocation to a method.
Given an invocation of the form C.m(arguments), the compiler starts by ensuring that class C is
available and does have a method named m. Next, the compiler examines the method’s signature
to ensure that the values of the arguments can indeed be assigned to the method’s parameters.
This requires that the number of arguments is equal to the number of parameters and that the
arguments are compatible with their corresponding parameter types.

When a method is overloaded and binding can be made with more than one variant of the
method, the compiler tries to limit the possibilities by using the most specific policy: select the
method that requires the least amount of promotion. If that fails, the compiler issues an ambiguous
1mvocation error.

1.3.5 Check your Understanding

Consider the utility PassByValue whose source code is shown fhere. This utility is used by the
following client:

1 import java.util.x*;
2 import java.io.PrintStream;

4 public class PassByValueClient

5 o

6 public static void main(String[] args)
7 {

8 PrintStream output = System.out;

9 int a = 1;

http://www.cse.yorku.ca/~buildIt/code//1/PassByValue.java.txt

14 Franck van Breugel and Hamzeh Roumani

10 PassByValue.add(a);

1 output.println(a);

12 Set<String> b = new HashSet<String>();

13 PassByValue.add(b);

14 output.println(b.size());

15 List<Integer> ¢ = new ArrayList<Integer>();
16 PassByValue.add(c);

17 output.println(c.size());

18 }

v F

Predict the output of this client. You can check the correctness of your prediction by saving the
above client to a file and then compiling it and running it.

1.4 Preconditions versus Validation

1.4.1 Preconditions and the Client

Before invoking a method, a client must ensure that its precondition is met. Failing to do so can
lead to unpredictable results. Consider, for example, the following method which computes and
returns the factorial of its argument:

1 public static long factorial(int x)

If the contract of this method specifies the precondition “x >= 07, then it is the client’s responsi-
bility to ensure that x is not negative.

What happens if we invoke this method and pass —17 The result is unpredictable: the imple-
menter may have used an algorithm that crashes if x is negative, and in that case an exception will
occur. It is also possible that the implementer may have started by computing the absolute value
of x, and in that case the wrong result, 1, is returned, and this will likely lead to a logic error in the
client’s program. What is worse, the result is not guaranteed to be the same every time because the
implementer can change the algorithm (in a future release or dynamically for web services) without
informing the client (recall that it would break the encapsulation if the implementer informed the
client). In conclusion, the client cannot rely on any particular outcome (an exception or a special
return) if a method is invoked when its precondition does not hold.

It is clear from the above that the precondition is 100% in the client’s concern. The implementer
can assume that the precondition is met and should not be concerned with the possibility that it
is not.

1.4.2 Validation and the Implementer

If the contract of a method does mot specify a precondition, the client can invoke it without
any validation. Consider, for example, the following method in the java.lang.Math class which
computes and returns the positive (real) square root of its argument:

August 25, 2010 15

1 public static double sqrt(double x)

The contract (i.e. the API) does not specify a precondition; i.e. the precondition is true. Hence,
a client can invoke it and pass any double value. In particular, the client can pass a negative
value for x and still expect the method to behave in a predictable manner. Indeed, the API of
this method specifies (as part of the postcondition) that if x is less than zero then the return is
Double.NaN, the special double that indicates an out-of-range value. Hence, detecting a negative
value (i.e. validating the parameters) in the absence of a precondition is 100% in the implementer’s
concern. The implementation of the above method must therefore have the following structure:

1 public static double sqrt(double x)

2 {

3 double sqrt;

4 if (x < 0)

5 {

6 sqrt = Double.NaN;
7 }

8 else

9 {

10 // compute the square root and assign it to sqrt
11 }

12 return sqrt;

13 }

Instead of returning a special value, the implementer can also throw an exception.

1 public static double sqrt(double x) throws IllegalArgumentException
2 {

3 double sqrt;

4 if (x < 0)

5 {

6 throw new IllegalArgumentException("Argument of sqrt method cannot be
negative");

7 }

8 else

9 {

10 // compute the square root and assign it to sqrt

11 }

12 return sqrt;

13 }

Note that throws IllegalArgumentException has been added to the header of the method.

As a matter of good style, one should leave exceptions to exceptional situations. Hence, if the
problem is plausible and likely to occur under normal conditions then a special return is preferable
(e.g. adding a duplicate element to a Set). On the other hand if the problem is unpredictable (i.e.

16 Franck van Breugel and Hamzeh Roumani

exceptional) then it is preferable to throw an exception (e.g. connecting to a remote URL while the
network is down). No matter what action we choose, we have to make sure it is documented in the
postcondition either under Returns or Throws.

In summary, the onus is on the implementer if no precondition is specified. The implementer
must plan for special conditions, determine what to do when they occur, and document the taken
action as part of the postcondition.

1.4.3 Check your Understanding

The utility PreVal has the API shown herel As you can see from the API, it has three methods:
loadFactor, markup, and deviation. loadFactor works by invoking markup, and markup works
by invoking deviation. In other words, loadFactor is a client of markup, and markup is a client
of deviation.

Assume that deviation is already implemented (for the issue at hand, it does not really matter
what it computes and returns). How would you implement loadFactor and markup? Make sure
you properly assume the responsibilities of client and/or implementer when you handle pre- and
postconditions.

Compare your implementation with the one shown here.

1.5 Documenting a Utility Class

1.5.1 API Generation through javadoc

Utilities (and, in fact, all non-app classes) have two types of documentation: internal and external.
Internal documentation appears in the form of one-line comments (prefixed by //) or multi-line
comments (surrounded by /* and */). Its objective is to explain to implementers how the class
works. In contrast, external documentation explains to clients what the class does; i.e. its usage.
The external documentation of a class is also known as its contract or APL

It may seem natural to separate the class definition from its external documentation; i.e. store
the former in one file (e.g. Math. java) and the latter in another (e.g. Math.html). After all, these
two files have different formats: general text versus HTML. Such separation, however, does not
work well because, in real life, one finds that the API changes as the class is being implemented. The
person maintaining the API may make changes to it and forget to inform the person maintaining
the source file, and vice versa. Such loss of synchronization leads to an API that describes a certain
behaviour while the actual class has a different behaviour.

The ideal solution is to keep the external documentation embedded in the source file and to
have a utility that extracts it and formats it as HTML. This way, the HTML file would be for
output-only and no one would attempt to edit it (because it is overwritten every time the utility is
executed). This is the approach adopted by Java.

The API text appears within the class definition as multi-line comments surrounded by /#**
(two asterisks instead of one) and */. These comments are placed immediately before every public
attribute, constructor, and method in the class @ In addition, such comments are needed before the

5Tt is a good habit to also document private features in addition to public ones. Even though such documentation

http://www.cse.yorku.ca/~buildIt/api//1/PreVal.api/PreVal.html
http://www.cse.yorku.ca/~buildIt/code//1/PreVal.java.txt

August 25, 2010 17

class header to document the class as a whole; what it encapsulates, its invariants, who implemented
it, etc.
As an example, let us document one of the min methods of the Math class:

1 /K%

2 Returns the smaller of two int values.
3

4 Oparam a An argument.

5 @param b Another argument.

6 @return The smaller of a and b.

7 */

s public static int min(int a, int b)
o {

10

11 }

The first sentence gives an overall description of what the method does. When we write external
documentation, we have to keep in mind that all text will be converted to HI'ML. Hence, line
breaks, tabs, and other whitespace characters are all treated as a single space. If we feel the need
to format the output, use HTML tags, e.g. <code>,
, , etc. The API extraction utility
will place the first sentence of our documentation (up to the first period) in the Method Summary
section. The Method Detail section will contain this first sentence plus any following sentences.

Embedded in the documentation are special tags identified by the @ prefix. In the above example,
the @param is used to document every parameter of the method. The @return tag describes what
the method returns. The generated API is given below.

min

public static int min(int a,
int b)

Returns the smaller of two int values.

Parameters:

a - An argument.

b - Another argument.
Returns:

The smaller of a and b.

If a method does not take any parameters then no @param tag should be used. Similarly, there
should not be a @return tag if the method is void.
Here is an example for an attribute:

A L

is not visible to the client, it will prove invaluable to the implementer who is maintaining the class.

18 Franck van Breugel and Hamzeh Roumani

2 The double value that is closer than any other to pi, the ratio of the
3 circumference of a circle to its diameter.

4 */

5 public static final double PI = 3.141592653589793;

No special tags are normally needed for attributes.

Finally, here is an example for the documentation of the class as a whole (to appear at the top
of the API):

1 /xx

2 The class Math contains some methods for performing basic numeric operations
3 and some basic constants. The implementations of the methods have been

4 simplified and may not handle special cases correctly.

5

6 Q@author cbc

7 Osee java.lang.Math

s */

9 public class Math

The @see tag allows us to cross reference a second class (or feature) that is related to the current
one.
Once a class is documented, we can extract the API by using the following command:

javadoc -d dir Math. java

The d switch allows us to specify a directory dir in which the generated API should be stored. The
javadoc utility has many other switches and options. More information about the generation of
APIs can be found at |[java.sun.com/javadoc.

1.5.2 Documenting Preconditions and Exceptions

Consider the following method in our Math class:

1 /%%

2 Returns the value of the first argument raised to the second argument.
3

4 Oparam base The base.

5 Oparam exponent The exponent.

6 @return base^{exponent}.

7 */

s public static int pow(int base, int exponent)

It is clear from the return type that the class designer is not interested in cases in which exponent
is negative. Ensuring this can be either left to the client, by making it a precondition, or to the
implementer, by addressing it in the postcondition. Either way, the API must reflect and document
the choice, and that is what we focus on in this section.

http://java.sun.com/javadoc

August 25, 2010 19

Documenting a Precondition

If the designer opts for a precondition, we add a tag to specify it. Since Javadoc does not currently
have such a tag, we add a custom one and name it pre. (as a matter of style, we put a period at
the end of user-defined tags to distiguish them from built-in ones). The documentation becomes:

1 /%%

2 Returns the value of the first argument raised to the second argument.
3

4 Oparam base The base.

5 Oparam exponent The exponent.

6 O@pre. exponent >= O.

7 @return base^{exponent}.

s x/

o public static int pow(int base, int exponent)

In order to recognize the new tag and place it in between the parameters and the return in the
generated API, a few switches need to be used in the javadoc command:

javadoc -tag param -tag pre.:a:"Precondition: " -tag return -ddirMath.java

The resulting API is given below.

pow

public static int pow(int base,
int exponent)

Returns the value of the first argument raised to the power of the second argument.

Parameters:
base - The base.
exponent - The exponent.
Precondition:
exponent >= (.
Returns:

basetXponent

In order to create links to other classes, we can exploit the -1ink option. For example, to create
links to classes in the Java standard library, the option
-link http://java.sun.com/javase/6/docs/api/

can be used.

Documenting an Exception

If the designer opts for throwing an exception, we used the built-in tag throws to document this
action. Assuming that I1legalArgumentException is to be thrown, the documentation becomes:

20 Franck van Breugel and Hamzeh Roumani

1 /k%

2 Returns the value of the first argument raised to the second argument.
3

4 @param base The base.

5 Oparam exponent The exponent.

6 @return base^{exponent}.

7 Othrows IllegalArgumentException if exponent < O.

s x/

9 public static int pow(int base, int exponent) throws IllegalArgumentException

The resulting API is shown below.

pow

public static int pow(int base,
int exponent)
throws java.lang.IllegalArgumentException

Returns the value of the first argument raised to the second argument.

Parameters:
base - The base.
exponent - The exponent.
Returns:

bas eexponent

Throws:
java.lang.IllegalArgumentException - if exponent <0.

1.5.3 Check your Understanding

You implemented a utility in Section 1.2 that included the following factorial method:

1 public static long factorial(int n)

Recall that the return is a long (rather than an int) because the factorial function grows rapidly and
quickly exceeds the int range. Enhance your implementation by including the following features:

e Proper treatment of n > 0 as a precondition.
e Full javadoc documentation of the class.

o Generation of the API.

1.6 Beyond the Basics

1.6.1 Using an Interface to Declare Parameters

Suppose that we are asked to implement a utility that includes the following method:

August 25, 2010 21

1 public static int frequency(ArrayList<Long> list, long x)

The method counts and returns the number of times the long x appears in the passed ArrayList.
The return is 0 if x is not present in 1ist. How would we implement this method? Think about it
and then write the code and test it.

Suppose that we were later asked to add a second method to our utility, one with the following
header:

1 public static int frequency(LinkedList<Long> list, long x)

This method behaves exactly the same as the earlier one except it takes a LinkedList rather than
an ArrayList. We could add this method to our utility (as an overloaded version of the earlier one)
but that would be a clear violation of a key software engineering principle that calls for avoiding
code duplication. If we think about the algorithm needed for either method, we will quickly realize
that they both use the same logic. Indeed, the needed methods (e.g. list.size(), list.get (int),
or list.iterator()) are all present in the List interface. Hence, we could combine the above two
methods into just one by declaring the 1ist parameter through its interface rather than its class:

1 public static int frequency(List<Long> list, long x)

Note that even though we focused on interfaces, the observation of this subsection applies as well
to abstract and concrete superclasses. For example, before implementing a method, say setTime,
that takes a parameter of type Time that extends Date, ask we can ask ourselves “Does the method’s
logic depends on the features of Time or on those of its superclass Date?” If it depends on those
of Date then declare its parameter as a Date type. This way, the method can be invoked with an
argument of either type and still function correctly.

Generally speaking, using the “highest” possible interface, class, or abstract class to declare
parameters, makes our methods more versatile because their parameters would be able to accom-
modate a larger set of arguments.

1.6.2 Using Generics for Parameters and Returns

We saw that using an interface rather than a class to declare parameters allows us to consolidate

1 public static int frequency(ArraylList<Long> list, long x)

and

1 public static int frequency(LinkedList<Long> list, long x)

into one method

1 public static int frequency(List<Long> list, long x)

In this section we pursue a similar consolidation but in an orthogonal dimension: the type of the
elements in the list.

Let us start with a simple case in which we seek to support int in addition to long. Can
a client of the above method invoke it by passing a List<Integer> and an int? The answer is

22 Franck van Breugel and Hamzeh Roumani

no because List<Integer> is not a subclass of List<Long>. In general, there is no inheritance
relation between List<A> and List even if A is a subclass of Bl] Hence, even if we changed the
header of our method to

1 public static int frequency(List<Object> list, Object x)
the client would still not be able to invoke it by passing a List<Integer> and an int for the same
reason.

The solution is to use generics in our implementation. Rather than use Integer or Long to
refer to the type, let us use the type parameter T:

1 public static <T> int frequency(List<T> list, T x)

The token <T> before the return type declares that this is a generic method. We implement the
body of the method as if T were a concrete type. Here is a possible implementation:

1 public static <T> int frequency(List<T> list, T x)

2 {

3 int result = 0;
4 for (T e : list)
5 {

6 if (e.equals(x))
7 {

8 result++;
9 }

10 }

11 return result;
12 }

Ge.nerally speaking, using generics makes the methods more versatile without sacrificing type
safety

1.6.3 Check your Understanding
We like to write the utility IntegerArrayList that contains the following method:

1 public static double sum(ArrayList<Integer> list)

The method returns the sum of the passed collection of integers. Implement the utility, test it, and
make sure it behaves as specified.

We now seek to go beyond the basics by generalizing this method in two orthogonal ways. We
will do this in stages:

"The technical name for this behaviour is that generics are not covariant.

8We may think that using <Object> for parameter declaration can achieve the same versatility as using generics.
Doing so, however, sacrifices type safety because it thwarts the type checking done by the compiler and invariably
leads to crashes due to illegal type casts.

August 25, 2010 23

e Copy IntegerArrayList.java to IntegerCollection.java and refactor the method in
IntegerCollectionso that its argument can be of type ArrayList<Integer>, LinkedList<Integer>,
TreeSet<Integer>, or HashSet<Integer>. Compile and test the new utility and make sure
it behaves as specified.

e Copy IntegerArraylist.javato NumberArrayList. javaand refactor the method in NumberArrayList
so that its argument is an ArrayList of any numeric type, e.g. ArrayList<Integer>, ArrayList<Long>,
ArrayList<Double>, etc. Compile and test the new utility and make sure it behaves as
specified. Recall that all numeric types extend Number. Note, however, that generics are
not covariant, and hence, you cannot simply use ArrayList<Number> because even though
Integer ¢s a Number, ArrayList<Integer> is not an ArrayList<Number>.

e Create the NumberCollection utility so that its sum method combines the above two gener-
alizations; i.e. it accepts any collection of any numeric type.

1.6.4 Generics with Wildcards

Given a list 1ist of Date objects, we seek to write a utility class with a method named smaller
that determines if all elements of a given list are smaller than a given Date object x. We are not
concerned here with the details of the implementation of the method, just with its signature. Only
the fact that the method smaller will use the method compareTo to compare the elements of 1ist
with x will play a role in our discussion below. One suggestion for the signature of smaller would
be to use:

1 public static boolean smaller(List<Date> list, Date x)

This signature, however, restricts the usability of the method to the Date type. We like to
come up with a signature that makes the method usable for any list of comparable objects and
any object x that can be compared with the list elements. For example, the list could be of type
List<Time> and x could be of type Date which is the superclass of Time and can be compared with
it.

Next, we discuss five different proposals for a more versatile signature and briefly critique each
proposal by commenting on its type safety and versatility.

1 public static boolean smaller(List list, Object x)

This proposal is clearly not typesafe because it does guarantee that the list elements are comparable
with x. The implementer will not be able to invoke compareTo on x without casting it first, and
such a cast may lead to a runtime error.

1 public static <T> boolean smaller(List<T> list, T x)

Also this proposal is not typesafe because it does guarantee that T implements the Comparable
interface. This signature can thus lead to the same problems as the first one.

1 public static <T extends Comparable<T>> boolean smaller(List<T> list, T x)

24 Franck van Breugel and Hamzeh Roumani

In this case, the type parameter T is restricted: only a class like Date that implements the interface
Comparable<Date> can be used. This restriction can roughly be captured by the following UML-like
diagram.

‘Comparab1e<T>‘

Note that the class Time that implements Comparable<Date> cannot be used. Hence, its applica-
bility is limited to lists of objects that can be compared with an object of the same type.

1 public static <T extends Comparable<? super T>> boolean smaller(List<T> list,
T x)

Also in this case, the type parameter T is restricted. This case is less restrictive than the previous
one. The 7 is called a wildcard. The pattern ? super T is matched by any super class of T or T
itself. In this case, the restriction can roughly be captured by the following UML-like diagram. In
the diagram, we use to denote that class A extends class B or A equals B. The wildcard
is represented by S in the diagram.

‘ Comparable<S>

The class Date matches the pattern <T extends Comparable<? super T>> since the class Date
implements the interface Comparable<Date> (In this case, both S and T are matched with Date.)

Also the class Time matches this pattern since the class Time implements the interface Comparable<Date>.
(In this case, S and T are matched with Date and Time, respectively.) However, the method can-

not be used for a List<Time> object and a Date object, since T would have to match Date but
List<Time> is not compatible with List<Date>.

1 public static <T> boolean smaller(List<? extends Comparable<? super T>> list,
T x)

To also capture the combination of a List<Time> object and a Date object we add another wildcard.
In this case, the restriction can roughly be captured by the following UML-like diagram. In the
diagram, the first wildcard is represented by R and the second one by S.

‘Comparab1e<S>‘

If T is matched by Date, then List<Time> matches List<? extends Comparable<? super T>>
since the Time class implements the Comparable<Date> interface. (In this case, S and T are both
matched with Date and R is matched with Time.)

August 25, 2010 25

1.6.5 Loop Invariants

As we already mentioned earlier, a loop invariant is a boolean expression that holds at the beginning
of every iteration of the loop. Every loop has many loop invariants. For example, the boolean
expression true is a loop invariant for every loop. Recall that the boolean expression true always
holds and, hence, holds at beginning of every iteration of any loop.

Let us consider the following code snippet, which is very similar to the body of the pow method.

1 int pow = 1;
2 int i1 = 0;
s while (i < b)

e A

5 pow = pow * a;
6 i++;

7

s return pow;

As we already mentioned above, true holds at the beginning of every iteration of a loop and, hence,
is a loop invariant for the above loop. However, it does not say anything interesting about the loop.

The boolean expression i >= 0 is also a loop invariant for the above loop. At the beginning
of the first iteration, the variable i has the value zero and, hence, the boolean expression i >= 0
holds. Since the variable i is incremented in the body of the loop, the loop invariant is maintained
by the loop and, therefore, holds the beginning of subsequent iterations as well. This loop invariant
is more interesting.

The boolean expression i <= b is a loop invariant for the above loop as well. From the pre-
condition b >= 0 and the fact that the variable i is initialized to zero, we can conclude that the
boolean expression i <= b holds at the beginning of the first iteration of the loop. The body of
the loop is only executed if the boolean expression i < b holds. In the body, the variable i is
incremented by one and, hence, the boolean expression i <= b holds at the end of each iteration
(which is the beginning of the next iteration). This loop invariant can be used to conclude that the
boolean expression i == b holds at the end of the loop.

As we have already seen earlier, the boolean expression pow == a® is a loop invariant for the
above loop as well. We can also combine loop invariants. Since the booleans expressions i <= b
and pow == a® hold at the beginning of every iteration of the loop, the boolean expression i <= b
&& pow == a' does as well and, hence, is a loop invariant as well. This loop invariant can be used
to prove that pow == aP holds at the end of the above code snippet.

Coming up with a loop invariant that tells us something essential about the loop can be difficult.
There are tools that can help us with finding loop invariants. However, these tools only partially
solve the problem of finding an appropriate loop invariant. It can be shown that it is impossible to
develop a tool that can find an appropriate loop invariant for any loop.

26

Franck van Breugel and Hamzeh Roumani

