
Lecture #21

CSE1030 – Introduction to
Computer Science II

Searching and Sorting

Goals for Today
Theoretical Goals:

Introduction to "Theory of Computing"
Concept of "Big-O" Notation
Complexity

Practical:
Searching and Sorting

What are our options?
How do we decide what the best options are?

CSE1030 – Lecture #21

Searching: Linear Search (Unordered List)
Complexity and the "Big-O"
Searching: Binary Search (Ordered List)
Bubble Sort
Selection Sort
Insertion Sort
Quicksort
Mergesort
We're Done!

Searching

Searching is a common problem we often face
when writing programs

The question is, how best to find an item stored
in a collection?

Although the particular data (or Object) we
might be looking for could be just about
anything, the searching problem itself usually
looks about the same

Searching Terminology
"Data records" typically contain several fields
The field(s) we want to search on are called the
"key"

public class Person
{

// attributes
private String name;
private int age;
private long bankAccount;
private int shoesize;
etc. ...

If I'm searching
for a Person by

Name, then
Name is the Key

Other fields could
be the key instead

(or as well), it
depends upon what
we're searching for

Searching Example:
What if we have an array of data, like this:

What's the best way
to find an element?

(To keep the example
simple, let's just use
integers)

int[] array = {
10, 8, 75, 60, 20,
4, 86, 91, 81, 32,

37, 84, 5, 74, 42,
59, 2, 95, 22, 31,
...
58, 27, 40, 88, 65,
62, 68, 64, 73, 55,
56, 18, 54, 89, 17,
23, 63, 49, 14, 33,
4, 36, 19, 78, 45,

};

Linear Search
// we want to find this
int key = 44;

boolean found = false;

for(int i = 0; i < array.length; i++)

// we found it! :-)
if(key == array[i])
{

found = true;
System.out.println("We found "

+ key + " at index " + i);
break;

}

// we didn't find it :-(
if(!found)

System.out.println("We didn't find "
+ key);

Loop through
the array
searching for the
item of interest

On average we
have to check ½
of the slots in the
array to find the
element of
interest

Analysis of Linear Search

How long does it take to find our number?

We could get lucky if the key is near the front

Otherwise we may have to search all the way to
the end of the array

This is called the "Worst Case",
here the worst case = n comparisons

On average we would expect to have to search
about half of the array

This is called the "Average Case",
here the average case = ½ n comparisons

10 8 75 60 20 4 86 91 81 32 37 84 5 …

How Long does each Comparison Take?
// we want to find this
int key = 44;

boolean found = false;

for(int i = 0; i < array.length; i++)

// we found it! :-)
if(key == array[i])
{

found = true;
System.out.println("We found "

+ key + " at index " + i);
break;

}

// we didn't find it :-(
if(!found)

System.out.println("We didn't find "
+ key);

Although it
would be tough
to figure out
exactly, we can
estimate how
long it would
take to perform
this search…

How Long does each Comparison Take?
...

for(int i = 0; i < array.length; i++)

// we found it! :-)
if(key == array[i])
{

found = true;
System.out.println("We found "

+ key + " at index " + i);
break;

}

...

1. t(i compare)

2. t(i increment)

3. t(key compare)

4. t(loop)

Worst Case time = n × (t1 + t2 + t3 + t4)

Average Case time = ½ n × (t1 + t2 + t3 + t4)

"Big-O" Notation
The problem is that those times (t1, t2, t3, and t4) all
depend upon:

The hardware (processor clock rate & memory access speed)
The language (C is faster than Java)
On more complicated algorithms, the skill of the programmer

To have a fair comparison of the algorithm we have to
leave all of those "t" terms out

Because right now we're really interested in how good the
algorithm is, not how good the hardware or language is

This is the basis of "Big-O" notation:
Worst Case time = n × (t1 + t2 + t3 + t4), but we write:
Worst Case is O(n)

Average Case time = ½ n × (t1 + t2 + t3 + t4), we write:
Average Case is O(n)

CSE1030 – Lecture #21

Searching: Linear Search (Unordered List)
Complexity and the "Big-O"
Searching: Binary Search (Ordered List)
Bubble Sort
Selection Sort
Insertion Sort
Quicksort
Mergesort
We're Done!

"Big-O" Notation
The idea of "Big-O" notation is to provide an
idea of the relative time-efficiency of an
algorithm

We are also worried about memory ("space-
efficiency"), but not as much as time-efficiency

As we just saw, we remove factors that depend
only upon the particular implementation
(processor, language)

Terminology:
An algorithm like the linear search we just saw,
which is O(n), we would say is "Order n"

Common Time Complexities

O(1) constant time
O(log n) log time
O(n) linear time
O(n×log n) log linear time
O(n2) quadratic time
O(n3) cubic time
O(2n) exponential time

BETTER

WORSE
Why are these
functions in this

order?

Why is Complexity Important?

Complexity is important because it gives us a
tool to quickly check whether a problem is
solvable or not

This is important because some problems
cannot be solved (in a reasonable amount of
time)

… and it is not always obvious which problems
are solvable and which aren't …

Problem: List the Piano Chords

Can you write a program to list every
possible chord that could be played
on a (mechanical) piano?

Assuming no limit on
the number of fingers

Piano Chord Analysis
How many Piano Chords are there?

There are 88 keys comprising a piano keyboard,
and so there are 288 possible chords

In any chord,
this key could
be up or down

and so
could this

key

and so
could this

key
88 times…

So how long would it take?
Simply printing a list of all of the possible
chords is order: O(2n), where n = 88

Let's assume you can print 1 chord every
nanosecond…

288 nanoseconds
= 3.1 x 1026 nanoseconds
= 3.1 x 1017 seconds
= 5.2 x 1015 minutes
= 8.6 x 1013 hours
= …

So how long would it take?
Simply printing a list of all of the possible chords
is order: O(2n), where n = 88

Let's assume you can print 1 chord every
nanosecond…

288 nanoseconds
= 8.6 x 1013 hours
= 3.6 x 1012 days
= 9.8 x 109 years That's 9.8

Billion Years
The Universe is only 13.7 Billion

Years old, so this could take a while!

Conclusion?
Although the problem sounds (and is) simple,
because the "complexity of our algorithm" is O(2n)
we could never hope to see our program run to
completion in our lifetime

In theoretical terms our goal is to find algorithms
and data structures that have a low complexity

And in terms of applied computer science (i.e.,
working for "the man") our goal is to know enough
about complexity to know which data structure from
the API to use (array versus linked-list) and which
sorting algorithm from the API to call to sort our
data…

CSE1030 – Lecture #21

Searching: Linear Search (Unordered List)
Complexity and the "Big-O"
Searching: Binary Search (Ordered List)
Bubble Sort
Selection Sort
Insertion Sort
Quicksort
Mergesort
We're Done!

Binary Search
What if the array of integers was sorted? We
could "bisect" the array. Let's find 10….

2 4 5 8 10 14 17 20 22 23 27 29 30
0 126

TopBottom Middle

array[Middle] is too large!
So we move "Top" down

Binary Search
What if the array of integers was sorted? We
could "bisect" the array. Let's find 10….

2 4 5 8 10 14 17 20 22 23 27 29 30
0 126

Bottom TopMiddle

array[Middle] is too small!
So we move "Bot" up

Binary Search
What if the array of integers was sorted? We
could "bisect" the array. Let's find 10….

2 4 5 8 10 14 17 20 22 23 27 29 30
0 126

Bottom
Middle

Top
Found it!

Binary Search Code
//the thing I am searching for
int key = 10;

// pointer to the top and bottom of
// the search range
int bot = 0;
int top = array.length -1;

// find the middle of the range
int mid = (top + bot)/2;

while(top > bot)
{

// found it? exit the loop
if(key == array[mid])

break;

// mid is too high? bring down the
// top of the search range
else if(key < array[mid])

top = mid - 1;

// mid is too low? bring up the
// bottom of the search range
else

bot = mid + 1;

// calculate a new middle
mid = (top + bot)/2;

}

// did we find it?
if(key == array[mid])

System.out.println("We found " + key
+ " at index " + mid);

// we didn't find it :-(
else

System.out.println("We didn't find " + key);

Binary Search Analysis

The binary search algorithm splits the
search space in half every iteration

This means in the worst case it will
take log(n) steps to find the item

So Binary Search is order: O(log n)

CSE1030 – Lecture #21

Searching: Linear Search (Unordered List)
Complexity and the "Big-O"
Searching: Binary Search (Ordered List)
Bubble Sort
Selection Sort
Insertion Sort
Quicksort
Mergesort
We're Done!

Sorting

Having sorted data makes searching
much faster

So what options do we have for sorting?

Let's start with the "Bubble Sort"

Bubble Sort
Compare each element (except the last one) with its
neighbor to the right

If they are out of order, swap them

Then: Compare each element (except the last two)
with its neighbor to the right

If they are out of order, swap them

Then: Compare each element (except the last three)
with its neighbor to the right

Continue as above until you have no unsorted
elements on the left

7 2 8 5 4

2 7 8 5 4

2 7 8 5 4

2 7 5 8 4

2 7 5 4 8

2 7 5 4 8

2 5 7 4 8

2 5 4 7 8

2 7 5 4 8

2 5 4 7 8

2 4 5 7 8

2 5 4 7 8

2 4 5 7 8

2 4 5 7 8

(done)

Example of Bubble Sort Code for Bubble Sort
public static void bubbleSort(int[] a)
{

int outer, inner;
// counting down
for (outer = a.length - 1; outer > 0; outer--)
{

// bubbling up
for (inner = 0; inner < outer; inner++)
{

// if out of order...
if (a[inner] > a[inner + 1]) {

int temp = a[inner]; // ...then swap
a[inner] = a[inner + 1];
a[inner + 1] = temp;

}
}

}
}

Analysis of Bubble Sort
The outer loop is executed n-1 times
(call it n, that’s close enough)

Each time the outer loop is executed, the inner
loop is executed

The inner loop executes n-1 times at first, linearly
dropping to just once

On average, inner loop executes about n/2 times
for each execution of the outer loop

In the inner loop, the comparison is always done
(constant time), the swap might be done (also
constant time)

result is n × n/2 × k, that is, O(½ n2 × k) ≈ O(n2)

CSE1030 – Lecture #21

Searching: Linear Search (Unordered List)
Complexity and the "Big-O"
Searching: Binary Search (Ordered List)
Bubble Sort
Selection Sort
Insertion Sort
Quicksort
Mergesort
We're Done!

Selection Sort
Search elements 0 through n-1 and select the smallest

Swap it with the element in location 0

Search elements 1 through n-1 and select the smallest
Swap it with the element in location 1

Search elements 2 through n-1 and select the smallest
Swap it with the element in location 2

Search elements 3 through n-1 and select the smallest
Swap it with the element in location 3

Continue in this fashion until there’s nothing left to
search

Selection Sort

The outer loop executes n-1 times
The inner loop executes about n/2
times on average (from n to 2
times)
Work done in the inner loop is
constant (swap two array elements)
Time required is roughly (n-1)×(n/2)
This is O(n2)

7 2 8 5 4

2 7 8 5 4

2 4 8 5 7

2 4 5 8 7

2 4 5 7 8

Code for Selection Sort
public static void selectionSort(int[] a)
{

// for every slot in the array
for(int outer = 0; outer < a.length - 1; outer++)
{

// find the next smallest
int min = outer;

for(int inner = outer + 1; inner < a.length; inner++)
{

if(a[inner] < a[min])
min = inner;

}

// and put it with where it should go
int temp = a[outer];
a[outer] = a[min];
a[min] = temp;

}
}

CSE1030 – Lecture #21

Searching: Linear Search (Unordered List)
Complexity and the "Big-O"
Searching: Binary Search (Ordered List)
Bubble Sort
Selection Sort
Insertion Sort
Quicksort
Mergesort
We're Done!

Insertion Sort
We have a counter that loops through the
array, from bottom to top

Each new element that the counter points to is
inserted in order to the left of the counter

This means we have to shuffle elements up the
array to make room for each newly sorted element

Repeat for all elements

One Step of Insertion Sort

3 4 7 12 14 14 20 21 33 38 10 55 9 23 28 16

sorted next to be inserted

3 4 7 55 9 23 28 16

10

temp

3833212014141210

sorted

less than 10

Code for Insertion Sort
public static void insertionSort(int[] a)
{

// for every slot in the array
for(int outer = 1; outer < a.length; outer++)
{

int newValue = a[outer];

// find the location of the next element
int inner;
for(inner = 0; inner < outer; inner++)
{

if(newValue < a[inner])
break;

}

// shuffle the elements up
for(int shuffle = outer; shuffle > inner; shuffle--)
a[shuffle] = a[shuffle-1];

// put the value in its spot and move on
array[inner] = newValue;

}
}

Analysis of Insertion Sort
Runs once through the outer loop, inserting each of
n elements

On average, there are n/2 elements already sorted

The inner loop looks at (and moves) half of these
(this gives a second factor of n/4)

So the time required for insertion sort to complete
sorting the array of n elements is proportional to ¼ n2

Discarding constants, insertion sort is O(n2)

CSE1030 – Lecture #21

Searching: Linear Search (Unordered List)
Complexity and the "Big-O"
Searching: Binary Search (Ordered List)
Bubble Sort
Selection Sort
Insertion Sort
Quicksort
Mergesort
We're Done!

QuickSort
Quicksort is one of the fastest sorting algorithms
known

It is naturally a recursive algorithm

The idea is:
Pick any element, and call it "the pivot"
Re-order the list (in 1 pass) so that all values less
than the pivot come before it in the array, and all
larger values come after it
Recursively sort the two sub-lists (of elements that
are smaller than the pivot, and elements that are
larger)

Quicksort Visualisation Code for QuickSort (1/4)
/**
* This is the array of integers that is to be sorted
*/

public static int[] array;

/**
* This is a little convenience function that swaps the
* contents of two slots in the array
* i.e.: array[x] <--> array[y]
*/

public static void exchange(int x, int y)
{

int temp = array[x];
array[x] = array[y];
array[y] = temp;

}

/**
* This is the quicksort algorithm.
*/

public static void quicksort()
{

quicksort(0, array.length-1);
}

public static void quicksort(int rangeStart, int rangeEnd)
{

// these are our indexes that we will use to search for
// pairs of data in the array that need to be exchanged
int start = rangeStart - 1;
int pivot = rangeEnd + 1;

// the pivot value - once we are done with this section of
// the array, all of the values will have been sorted into
// those that are less than this value, and those that are
// greater than this value
// (note that any value in our section of the array will do
// so we'll choose the value in the first slot)
int pivotvalue = array[rangeStart];

(2/4) (3/4)
// this is the "pivot algorithm"
// its purpose is to place all of the values that are
// less than the pivotvalue to the left, and all of
// the values that are larger to the right, with the
// index of the pivot (the variable called "pivot"
// denoting the place in the middle)
while(true)
{

// loop down from the top looking for
// a value that needs to be swapped
do {

pivot--;
} while(array[pivot] > pivotvalue);

// same thing, but coming up from the bottom
do {

start++;
} while(array[start] < pivotvalue);

(4/4)
// if we've found a pair to swap, then do it
if(start < pivot)

exchange(start, pivot);

// otherwise, we're done this section of the array
else

break;
}

// sort the next two ranges
// (the range below the pivot...)
if(rangeStart < pivot)

quicksort(rangeStart, pivot);

// (... and the range above the pivot)
if(pivot + 1 < rangeEnd)

quicksort(pivot + 1, rangeEnd);
}

Analysis of Quicksort
The analysis of Quicksort depends upon how lucky
the algorithm gets with the pivot values

If the pivots cause the array to be divided roughly
equally every time, then Quicksort is O(nlog n)

If the pivot values are not lucky, then the Quicksort
is order O(n2)

Although in practice things can be done to ensure
that the pivots are chosen well

And for large sets of data, Quicksort is one of the
fastest sorting algorithms we have

CSE1030 – Lecture #21

Searching: Linear Search (Unordered List)
Complexity and the "Big-O"
Searching: Binary Search (Ordered List)
Bubble Sort
Selection Sort
Insertion Sort
Quicksort
Mergesort
We're Done!

Merge Sort
1. Break the set to be sorted in half
2. Use recursion to sort each half
3. Merge the two sorted lists back together

(For source code see Assignment #8)

Merge sort works best with:
Data where sets can easily be re-ordered
(like linked-lists)
Analysis:

Average Case: O(n×log n)
Worst Case: O(n×log n)

Sorting Summary

O(n×log n)O(n×log n)Mergesort
O(n2)O(n×log n)Quicksort
O(n2)O(n2)Insertion
O(n2)O(n2)Selection
O(n2)O(n2)Bubble

Worst CaseAverage

Quicksort (or variations) are commonly used
everywhere, because the worst case is avoidable
Although it has a poor complexity, insertion sort is fast
for very small data sets (small n)
Mergesort is fastest for serially-accessible data

Sorting Summary
We have covered only the most popular
sorting algorithms here

There are many many more

But in practice you need to know only four
algorithms: Insertion sort, Quicksort,
Mergesort, and the HeapSort

Heapsort uses a "Tree" data structure, which you
won't cover until next year, and so we can't really
discuss it in detail yet (although it's pretty cool,
and it's about as fast as Quicksort, although its
average case and worst case are both
O(n×log n)).

CSE1030 – Lecture #21

Searching: Linear Search (Unordered List)
Complexity and the "Big-O"
Searching: Binary Search (Ordered List)
Bubble Sort
Selection Sort
Insertion Sort
Quicksort
Mergesort
We're Done!

