
Lecture #20

CSE1030 – Introduction to
Computer Science II

Recursion II

CSE1030 – Lecture #20
Review: Recursion
Iteration versus Recursion
Examples: Linked-List Functions
Example: Fractals
Example: AI Robot Path Planning
We're Done!

Recursion Review
static int factorial(int x)
{

if(x == 0)
return 1;

else
return x * factorial(x-1);

}

static public void main(String[] args)
{

int fact = factorial(10);
System.out.println("fact = " + fact);

}

The "Termination
Condition" or
"Base Case"

Formulation of the
"big" problem in

terms of a "smaller"
version, the

"Recursive Case"

Theory: Definition of Recursion
A function is Recursive if it calls itself (directly or
indirectly) from within its own body

Two components of a Recursive Solution:
1. A solution to the problem that involves a simpler

instance of the problem (called the
"Recursive Case")

2. A Direct Solution to a simple version of the
problem (called the "Termination Case", or
"Base Case")

Any algorithm can be implemented with either a
recursive or iterative algorithm, although some
problems are easier to solve one way or the other

Practical: Coding Recursion
A function is Recursive if it calls itself (directly or
indirectly) from within its own body

Recursive Functions always have:
1. An "if" statement

The "if" tests whether the function input is a
"Base Case"
If the input is a Base Case, then a value is returned
directly (without calling the function again)

2. Otherwise, the input requires the "Recursive
Case"

The function calls itself with an argument that is
closer to the Base Case than the original argument

How? Recursive Execution Stack
Every time we recurse, Java
creates a new stack frame, within
which the variables exist.

This is how recursion works.

fact()

fact()

fact()

fact() x = 1

x = 2

x = 3

x = 4

main()

fact = 24

args = String[0];

int fact(int x)
{

if(x == 0)
return 1;

else
return x * fact(x-1);

}

public void main(String[] args)
{

int f = fact(4);
System.out.println("fact = " + f);

}

fact() x = 0

CSE1030 – Lecture #20
Review: Recursion
Iteration versus Recursion
Examples: Linked-List Functions
Example: Fractals
Example: AI Robot Path Planning
We're Done!

Iterative versus Recursive Solutions
int factorial(int x)
{

if(x == 0)
return 1;

else
return x * factorial(x-1);

}

Recursive Solution

Iterative Solution

int factorial(int x)
{

int answer = 1;

for(int i = 1; i <= x; i++)
answer *= i;

return answer;
}

Which implementation is faster?

In class demonstration of:

benchmark.java

Comments about
Speed and Memory Usage

Sometimes Speed is very important (real-time
applications, games, etc.)

Sometimes Efficient Memory Usage is very important
(embedded programming)

Most of the time, though, there is lots of time and
memory, and so the algorithm can be written either
with recursion or with iteration, whichever is easier

Some people don't like recursive code because of the
possibility of stack overflows

But running out of memory is running out of memory,
regardless of whether the algorithm is recursive or iterative
A well-written implementation should be relatively reliable

CSE1030 – Lecture #20
Review: Recursion
Iteration versus Recursion
Examples: Linked-List Functions
Example: Fractals
Example: AI Robot Path Planning
We're Done!

Recursion and Linked-Lists
The best way to learn recursion is to study lots of
examples, and to code some up yourself!

Linked-Lists provide a great opportunity to use
recursion – we will look at several examples…

In class demonstration of:

recursiveLinkedLists.java

Code Samples follow…

Find the length of a linked-list
int length(Node p)
{

if(p == null)
return 0;

else
return 1 + length(p.next);

}

Recursive Solution

Iterative Solution

int length(Node p)
{

int i = 0;
while(p != null)
{

p = p.next;
i++;

}
return i;

}

Print a linked-list
void printList(Node p)
{

if (p != null)
{

System.out.println(p.data);
printList(p.next);

}
}

Recursive Solution

Iterative Solution

void printList(Node p)
{

while(p != null)
{

System.out.println(p.data);
p = p.next;

}
}

Printing Forward or Backward?
void printList(Node p)
{

if (p != null)
{

System.out.println(p.data);
printList(p.next);

}
}

Forward

Backward

void printReverseList(Node p)
{

if (p != null)
{

printReverseList(p.next);
System.out.println(p.data);

}
}

The order that we
print and recurse

matters!

Copying a linked-list

Node copy(Node p)
{

if(p == null)
return null;

else
return new Node(p.data, copy(p.next));

}

Recursive Solution:

Copying a linked-list is much easier using
recursion…

Copying a linked-list
Iterative Solution (Part 1)

static Node copy(Node pointer)
{

Node head = null;
Node tail = null;

while(pointer != null)
{

Node newNode = new Node(pointer.data, null);

// Special Case: if the list is empty
if(head == null)
{

head = tail = newNode;
}

Copying a linked-list

else
{

tail.next = newNode;
tail = newNode;

}

pointer = pointer.next;
}

return head;
}

Iterative Solution (Part 2)

Reversing a linked-list

Node reverse(Node p)
{

return reverse(p, null);
}

Node reverse(Node p, Node ancestor)
{

if(p == null) // empty?
return ancestor;

Node theNextNode = p.next; // remember who's next

p.next = ancestor; // point this node backwards

return reverse(theNextNode, p); // recurse to next node
}

Recursive Solution:

Reversing a linked-list

Node invertLinkedList(Node headFrom)
{

Node headTo = null;

while(headFrom != null)
{

// remove the head of the "From" list
Node theNodeThatWeAreMoving = headFrom;
headFrom = headFrom.next;

// add the node to the "To" list
theNodeThatWeAreMoving.next = headTo;
headTo = theNodeThatWeAreMoving;

}

return headTo;
}

Iterative Solution:

Inserting into an Ordered linked-list

Node insertInOrder(String key, Node p)
{

if(p == null || p.data.compareTo(key) >= 0)
return new Node(key, p);

else
{

p.next = insertInOrder(key, p.next);
return p;

}
}

Recursive Solution:

Usage:
head = insertInOrder("newdata", head);

void insertInOrder(String data)
{

// special case for inserting into
// an empty list
if(head == null)
{

head = new Node(data, null);
return;

}

// do we come before the first element?
// then we have to update the head
// pointer
if(head.data.compareTo(data) > 0)
{

head = new Node(data, head);
return;

}

Handle
insert into
empty List

Handle
insert at
the Head
of the List

Remember Inserting into an
Ordered a linked-list? (Part 1)

// find the correct spot in the list
Node pointer = head;
while(pointer.next != null

&& pointer.next.data.compareTo(data) < 0)
pointer = pointer.next;

// create the new node, the 'next' pointer should
// point to the next node in the list
Node newNode = new Node(data, pointer.next);

// update the 'next' pointer
// of the previous node
pointer.next = newNode;

}

Find the
node
above the
correct
spot

New
node

Update 'next' pointer
of the node above the
new node

Remember Inserting into an
Ordered a linked-list? (Part 2)

Deleting from an Ordered linked-list

Node deleteInOrder(String key, Node p)
{

if(p == null)
return p;

else if (p.data.equals(key))
return p.next;

else
{

p.next = deleteInOrder(key, p.next);
return p;

}
}

Recursive Solution:

Usage:
head = deleteInOrder("deldata", head);

static Node deleteByValue(String data)
{

// empty list?
if(head == null)

return null;

// location is the top of the list
if(head.data.equals(data))
{

Node oldHead = head;
head = head.next;
return oldHead;

}

Check whether
we're deleting
from the head of
the list, and
handle it

Handle
Empty
List

Remember Deleting from an
Ordered a linked-list? (Part 1)

// otherwise, we're looking for the
// node above the one we want to delete
Node pointer = head;
while(pointer.next != null

&& !pointer.next.data.equals(data))
{

pointer = pointer.next;
}

// not found?
if(pointer.next == null)

return null;

The data to be
deleted is not
found

Find the node
above the one
we want to
delete

Remember Deleting from an
Ordered a linked-list? (Part 2)

// remember the deleted node, so
// we can return it
Node deletedNode = pointer.next;

// now, update the 'next' pointer
pointer.next = pointer.next.next;

return deletedNode;
}

Grab a reference
to the node we're
deleting, to return

Here's where we
delete the node

Return a reference to the
deleted node

Remember Deleting from an
Ordered a linked-list? (Part 3)

Deleting the last Node of a linked-list

Node deleteLast(Node p)
{

if(p == null || p.next == null)
return null;

else
{

p.next = deleteLast(p.next);
return p;

}
}

Recursive Solution:

Usage:
head = deleteLast(head);

Node deleteFromEnd()
{

// if the list is empty, then there's
// nothing to do
if(head == null)

return null;

// if the list only has 1 node
// delete from head of list
if(head.next == null)
{

Node oldHead = head;
head = null;
return oldHead;

}

If there is only 1
node, then this is the
same as "delete from
head of the list"

Handle
Empty
List

Remember Deleting the End
of a linked-list? (Part 1) // otherwise, we're looking for the

// second-last node of the list, which
// is the node whose '.next.next'
// pointer is null
Node pointer = head;
while(pointer.next.next != null)

pointer = pointer.next;

// remember the deleted node, so
// we can return it (just in case
// the user wants it)
Node deletedNode = pointer.next;

// now, update the 'next' pointer
pointer.next = null;

return deletedNode;
}

Grab a reference
to the node we're
deleting, to return

Here's where we
delete the node

Return a reference to the
deleted node

Find the
second from
last node

Deleting the End? (Part 2)

"Two-List" Operations
All of the Linked-List operations we have seen
so far have used only 1 linked-list

Next, let's look at three operations that combine
two linked-lists into one list:

Append
Shuffle
Merge

For these examples will use the following data:

p = apple banana cherries fig grapes null

q = aardvark bat cat dragon elephant null

"Two-List" Examples
In class demonstration of:

recursiveLinkedLists2.java

Code Samples follow…

Append

Node append(Node p, Node q)
{

if(p == null)
return q;

else
{

p.next = append(p.next, q);
return p;

}
}

Recursive Solution:

apple
banana
cherries

fig
grapes
aardvark

bat
cat

dragon
elephant

Result:

Shuffle

Node shuffle(Node p, Node q)
{

if(p == null)
return q;

else if(q == null)
return p;

else
{

// Note we exchange p and q here
p.next = shuffle(q, p.next);
return p;

}
}

Recursive Solution:

apple
aardvark
banana
bat

cherries
cat
fig

dragon
grapes
elephant

Result:

(Alphabetical) Merge

Node merge(Node p, Node q)
{

if(p == null)
return q;

else if(q == null)
return p;

else if(p.data.compareTo(q.data) < 0)
{

p.next = merge(p.next, q);
return p;

}
else
{

q.next = merge(p, q.next);
return q;

}
}

Recursive Solution:

aardvark
apple
banana
bat
cat

cherries
dragon
elephant

fig
grapes

Result:
(alphabetical)

CSE1030 36

CSE1030 – Lecture #20
Review: Recursion
Iteration versus Recursion
Examples: Linked-List Functions
Example: Fractals
Example: AI Robot Path Planning
We're Done!

CSE1030 37

Recursion and Fractals
Self Similar problems are very well suited to
Recursion, because they naturally look like a
smaller version of themselves as you "zoom in"
to them

Fractals are defined as structures that are self
similar

This means that recursion is very useful for
generating fractals…

CSE1030 38

Fractal Tree Example
In class demonstration of:

FractalTree.java

CSE1030 39

Sierpinski Triangle Example
In class demonstration of:

FractalTriangle.java

CSE1030 40

CSE1030 – Lecture #20
Review: Recursion
Iteration versus Recursion
Examples: Linked-List Functions
Example: Fractals
Example: AI Robot Path Planning
We're Done!

CSE1030 41

Remember last lecture when we said…

We don't have to decompose a "big" problem
down only into little problems that we can solve

Some problems can be decomposed into a
smaller version of the same problem

In this case, we don't have to solve the "big"
problem or even the "smaller" problem, instead
we can get away with solving a very very small
version of the problem…

CSE1030 42

Recursion and Artificial Intelligence

Because Recursion does not require an explicit
solution of a problem, we can use recursion to
solve problems for which it is difficult to think of
a solution…

For this reason there is a correlation between
recursion and Artificial Intelligence

Many of the AI programming languages are strongly
recursive (e.g., Lisp, Prolog)

CSE1030 43

Can you think of an Algorithm that
can solve this problem?

Goal
Location

Start
Location

An Obstacle
Cartesian
Universe

(x,y)

Find a path from the Start to the Goal
Robot can only move up, down, left, or right

CSE1030 44

Can You Think of a Solution
to This Problem?

The Movement Planning Problem is a difficult AI
problem that involves trying to figure-out how to move
from a Start location to a Goal location

The idea is not to solve the specific problem posed on
the previous slide, but to write an algorithm that can
solve this problem regardless of the positions of the
Start, Goal, and Obstacles

Through recursion, we don't really have to solve this
problem, we just have to know how to get closer to the
solution, and how to solve a very easy "Base Case"
(like recognising when we have arrived at the Goal)

CSE1030 45

RobotPlanning Example
In class demonstration of:

RobotPlanning.java

CSE1030 46

CSE1030 – Lecture #20
Review: Recursion
Iteration versus Recursion
Examples: Linked-List Functions
Example: Fractals
Example: AI Robot Path Planning
We're Done!

CSE1030 47

Next topic…

Recursion I

