
Lecture #19

CSE1030 – Introduction to
Computer Science II

Recursion I

CSE1030 – Lecture #19
Introduction to Recursion
Execution Stack
Example: Reversing a String
Example: Mathematical Bisection
We're Done!

What is the Skill we Learn,
when we Learn Programming?

We have studied lots of little tricks

And we have learned that programming is just the 
act of breaking down big problems that we can't 
solve, into little problems that we can solve using 
the tricks we have learned

public void func()
{

doSomething();
doSomethingElse();
doOneLastThing();

}

…and break it down into 
"little problems" that we 

can easily solve

Take a "big" problem…

Here are some of our Tricks
To compare two things – use "if"
To do something a bunch of times – "loop"
Have a concept that has several parts? – make 
a class and use instance data ("has-a")
To remember a relatively unchanging number of 
objects – use an Array
To calculate a logarithm – use "Math.log"

These all represent "little problems" that we can 
solve



Problem Decomposition:
Turning a "big" problem into "little" ones

Example Problem:  Write a function that returns 
the factorial of an integer:

x! = x * (x-1) * (x-2) * … * 3 * 2 * 1

int factorial(int x)
{

int answer = 1;

for(int i = 1; i <= x; i++)
answer *= i;

return answer;
}

We naturally break 
the problem down, 
in this case to:
1 multiply operation, 
inside 1 loop

New Idea for Today!
We don't have to decompose a "big" problem 
down only into little problems that we can solve

Some problems can be decomposed into a 
smaller version of the same problem

In this case, we don't have to solve the "big" 
problem or even the "smaller" problem, instead 
we can get away with solving a very very small 
version of the problem

Think about that Factorial again…

like this instead:
x! = x * (x-1)!

x! = x * (x-1) * (x-2) * … * 3 * 2 * 1
We can rewrite the factorial equation,

… in other words, if we 
had a way to solve a 

smaller factorial, then it 
would be easy to solve 

this bigger one.

(x-1)!

This formulation 
expresses factorial in 

terms of a smaller 
factorial…

What would that look like in code?

"Naive Translation" into code:

x! = x * (x-1)!

New factorial formulation:

int factorial(int x)
{

return x * factorial(x-1);
}

factorial()



So far…
The programs we have seen all look like 
this…

… we have only seen functions that call other
functions

What happens if a function calls itself?

public void func()
{

doSomething();
doSomethingElse();
doOneLastThing();

}

isn't called in here

The function "func()"

Running our "Naive Translation"

Just to give us more information we've added 
some print statements.  Now, let's see what 
happens if we run it…

static int factorial(int x)
{

System.out.println("factorial(" + x + ") called!");
return x * factorial(x-1);

}

static public void main(String[] args)
{

int fact = factorial(10);
System.out.println("fact = " + fact);

}

Output (1/2)
>java factorialRecursive
factorial(10) called!
factorial(9) called!
factorial(8) called!
factorial(7) called!
factorial(6) called!
factorial(5) called!
factorial(4) called!
factorial(3) called!
factorial(2) called!
factorial(1) called!
factorial(0) called!
factorial(-1) called!
factorial(-2) called!
factorial(-3) called!
factorial(-4) called!
factorial(-5) called!
factorial(-6) called!
... (more on next slide)

The Good News is 
that it works – a 

function can call itself!

But we didn't stop
at a reasonable spot 
(is there anything we 
can do about this?)

Output (2/2)
factorial(-4354) called!
factorial(-4355) called!
factorial(-4356) called!
factorial(-4357) called!
factorial(-4358) called!
Exception in thread "main" java.lang.StackOverflowError

at sun.nio.cs.SingleByteEncoder.encodeArrayLoop(Unknown Source)
at sun.nio.cs.SingleByteEncoder.encodeLoop(Unknown Source)
at java.nio.charset.CharsetEncoder.encode(Unknown Source)
at sun.nio.cs.StreamEncoder.implWrite(Unknown Source)
at sun.nio.cs.StreamEncoder.write(Unknown Source)
at java.io.OutputStreamWriter.write(Unknown Source)
at java.io.BufferedWriter.flushBuffer(Unknown Source)
at java.io.PrintStream.write(Unknown Source)
at java.io.PrintStream.print(Unknown Source)
at java.io.PrintStream.println(Unknown Source)
at factorialRecursive.factorial(factorialRecursive.java:6)
at factorialRecursive.factorial(factorialRecursive.java:13)
at factorialRecursive.factorial(factorialRecursive.java:13)
at factorialRecursive.factorial(factorialRecursive.java:13)
at factorialRecursive.factorial(factorialRecursive.java:13)

(the last line repeats about 4000 times) ...



What did we see?
A function that calls itself works!

But it didn't terminate… it just kept going

Eventually the Java Virtual Machine ran out of 
"Stack" space

We'll talk about the Stack in a few slides

Question: How can we make the program 
terminate?

Terminating…
Large values of factorial can be daunting, 
but the smallest values are easy:

Remember we said we could get away with: 
"solving a very very small version of the 
problem"?  Let's use: 0! = 1

2! = 2

1! = 1

0! = 1

Terminating…
Let's add one "if" statement to check for the 
factorial of zero…
static int factorial(int x)
{

System.out.println("factorial(" + x + ") called!");

if(x == 0)
return 1;

else
return x * factorial(x-1);

}

static public void main(String[] args)
{

int fact = factorial(10);
System.out.println("fact = " + fact);

}

Output of Improved Version:

>java factorialRecursive
factorial(10) called!
factorial(9) called!
factorial(8) called!
factorial(7) called!
factorial(6) called!
factorial(5) called!
factorial(4) called!
factorial(3) called!
factorial(2) called!
factorial(1) called!
factorial(0) called!
fact = 3628800 It worked!



How do the Result values get Returned?
Same functionality, more print statements…

static int factorial(int x)
{

System.out.println("factorial(" + x + ") called!");

if(x == 0)
{

System.out.println("factorial(0) returned: 1");
return 1;

}
else
{

int retval =  x * factorial(x-1);
System.out.println("factorial(" + x + ")"

+ " returned: " + retval);
return retval;

}
}

Output of 
Improved Version

>java factorialRecursiveVerbose
factorial(10) called!
factorial(9) called!
factorial(8) called!
factorial(7) called!
factorial(6) called!
factorial(5) called!
factorial(4) called!
factorial(3) called!
factorial(2) called!
factorial(1) called!
factorial(0) called!
factorial(0) returned: 1
factorial(1) returned: 1
factorial(2) returned: 2
factorial(3) returned: 6
factorial(4) returned: 24
factorial(5) returned: 120
factorial(6) returned: 720
factorial(7) returned: 5040
factorial(8) returned: 40320
factorial(9) returned: 362880
factorial(10) returned: 3628800
fact = 3628800

Same functionality, more 
print  statements…

Shows both the calls 
recursing down to the 
terminating case

Then the returns recursing
back out to the answer

Let's Re-examine the Code
static int factorial(int x)
{

if(x == 0)
return 1;

else
return x * factorial(x-1);

}

static public void main(String[] args)
{

int fact = factorial(10);
System.out.println("fact = " + fact);

}

The "Termination 
Condition" or 
"Base Case"

Formulation of the 
"big" problem in 

terms of a "smaller" 
version, the 

"Recursive Case"

Definition of Recursion
A function is Recursive if it calls itself (directly or 
indirectly) from within its own body

The two components of a Recursive Solution:
1. A solution to the problem that involves a simpler 

instance of the problem (called the          
"Recursive Case")

2. A Direct Solution to a simple version of the 
problem (called the "Termination Case", or    
"Base Case")

Also, notice that we have seen two solutions to the 
factorial problem – one that is recursive, and one 
that is not recursive ("iterative")…



Iterative versus Recursive Solutions
int factorial(int x)
{

if(x == 0)
return 1;

else
return x * factorial(x-1);

}

Recursive Solution

Iterative Solution

int factorial(int x)
{

int answer = 1;

for(int i = 1; i <= x; i++)
answer *= i;

return answer;
}

Iterative versus Recursive Solutions
There is nothing particularly special about 
Recursion versus Iteration

Any recursive algorithm can be converted into an 
iterative algorithm, and vice-versa

The decision regarding whether to apply iteration 
or recursion depends upon the nature of the 
problem

Most problems are best approached with iteration
But some problems are simpler to approach with 
recursion

Advantages and Disadvantages
of Recursion

Advantages
Some problems can be coded much more simply 
with recursion (we'll see more examples soon)
Some other languages are optimised for recursion 
("functional languages", like Haskell, Erlang, Lisp) 

Disadvantages
Can use more memory than Iteration (in particular, 
can use more valuable execution stack memory)
Can be less efficient (poorly designed recursion 
can cause intermediate values to be calculated 
more than once)

CSE1030 – Lecture #19
Introduction to Recursion
Execution Stack
Example: Reversing a String
Example: Mathematical Bisection
We're Done!



How is Recursion Possible?

Next we are going to discuss a mechanism 
that the Java Virtual Machine uses when 
executing programs

There is a thing called an "Execution Stack" 
that is used to keep the variables within 
functions separate from one another 
(remember "Variable Scope"?)

It is the Execution Stack that makes 
recursion possible

CSE1030  26

class example
{

public static void main(String[] args)
{

int answer = A(0);
System.out.println("answer = " + answer);

}

static int A(int parameter) { return B(parameter + 1); }

static int B(int parameter) { return C(parameter + 1); }

static int C(int parameter) { return D(parameter + 1); }

static int D(int parameter) { return parameter + 1; }
}

How does Java keep the "parameter" 
variables straight?

CSE1030  27

Example – annotated.java

>java annotated
Calling: A(0)

A(0) called
B(1) called

C(2) called
D(3) called
D returns 4

C returns 4
B returns 4

A returns 4
answer = 4

CSE1030  28

Execution Stack Every time that Java starts 
a new function, it creates a 
"stack frame", a unique 
place to hold the local 
variables for that function

When a function returns, 
the stack frame goes away

This is called the 
"execution stack"

Consequently, in this 
example each function has 
their own distinct variable 
called "parameter"

A()

B()

C()

D() parameter = 3

parameter = 2

parameter = 1

parameter = 0

main()

answer = 4

args = String[0];



CSE1030  29

Recursive Execution Stack Example
Every time we recurse, Java 
creates a new stack frame, within 
which the variables exist.

This is how recursion works.

fact()

fact()

fact()

fact() x = 1

x = 2

x = 3

x = 4

main()

fact = 24

args = String[0];

int fact(int x)
{

if(x == 0)
return 1;

else
return x * fact(x-1);

}

public void main(String[] args)
{

int f = fact(4);
System.out.println("fact = " + f);

}

fact() x = 0

CSE1030  30

CSE1030 – Lecture #19
Introduction to Recursion
Execution Stack
Example: Reversing a String
Example: Mathematical Bisection
We're Done!

CSE1030  31

Example: Reversing a String
main():

Output:

class reverseRecursive
{

static String reverse(String s)
...

static public void main(String[] args)
{

String before = "ABCDEFG";
String after = reverse(before);

System.out.println("after = " + after);
}

}

>java reverseRecursive
after = GFEDCBA

CSE1030  32

Reversing a String
static String reverse(String s)
{

if(s.length() == 0)
return "";

return reverse(s.substring(1))
+ s.charAt(0);

}

Recursive 
Solution

Iterative 
Solution

static String reverse(String s)
{

String retval = "";

for(int i = s.length() - 1; i >= 0; i--)
retval = retval + s.charAt(i);

return retval;
}



CSE1030  33

CSE1030 – Lecture #19
Introduction to Recursion
Execution Stack
Example: Reversing a String
Example: Mathematical Bisection
We're Done!

CSE1030  34

Mathematical Bisection
Bisection is a technique used to find the point where a 
function crosses zero (to find x where f(x) = 0)
We sandwich the zero between two points (start & end)

(0,0)

y = sin(x)

start

end

CSE1030  35

Mathematical Bisection
Then we choose a value between start & end and 
check whether the function is positive or negative there

(0,0)

y = sin(x)

start

end
mid = (start + end) / 2

sin(mid) < 0 CSE1030  36

Mathematical Bisection
Because sin(mid) < 0, we should move the end point 
inwards…

(0,0)

y = sin(x)

start

end



CSE1030  37

Mathematical Bisection

(0,0)

y = sin(x)

start

end

mid = (start + end) / 2

sin(mid) > 0

And we repeat…
This time, sin(mid) > 0, so we move the start point in…

CSE1030  38

Mathematical Bisection

(0,0)

y = sin(x)

start

end

CSE1030  39

Mathematical Bisection
Continue repeating the process until start & end are 
close enough together that we have achieved the 
desired accuracy

(0,0)

y = sin(x)

start

end

mid = (start + end) / 2

sin(mid) > 0

CSE1030  40

Mathematical Bisection
We can use bisection to calculate the 
value of π, because the point in x∈[2,4] 
where sin(x) = 0, is exactly where x = π

(0,0)

y = sin(x)

sin(π) = 0



CSE1030  41

class zero
{

static double f(double x)
{

return Math.sin(x);
}

static final double errorTolerance = 0.000000000000001;

static public void main(String[] args)
{

System.out.println(" Pi = " + bisect(2.0, 4.0));
}

}

Mathematical Bisection: Code
Just for convenience, 

we'll use f(x) to 
denote the function 
that we are zeroing

How much accuracy do 
we want?  How close 

should start & end get?

CSE1030  42

static double bisect(double start, double end)
{

double mid = (start + end) / 2.0;

if(Math.abs(start - end) < errorTolerance)
return mid;

if(f(mid) > 0)
return bisect(mid, end);

else
return bisect(start, mid);

}

Recursive 
Solution

CSE1030  43

Iterative 
Solution

static double bisect(double start, double end)
{

double mid = 0;

while(Math.abs(start - end) > errorTolerance)
{

mid = (start + end) / 2.0;

if(f(mid) > 0)
start = mid;

else
end = mid;

}

return mid;
}

CSE1030  44

Output

With this program we calculate the digits of Pi

This algorithm can be used to achieve any 
accuracy we want (by reducing the value of the 
"errorTolerance"

Notice that in this example (as in the previous 
examples) the recursive solution is shorter

>java zeroRecursive
Pi = 3.1415926535897936



CSE1030  45

CSE1030 – Lecture #19
Introduction to Recursion
Execution Stack
Example: Reversing a String
Example: Mathematical Bisection
We're Done!

CSE1030  46

Next topic…

Recursion I


