CSE1030 - Introduction to Computer Science II

Lecture \#19
Recursion
$\left.\begin{array}{|c|c|}\hline \text { What is the Skill we Learn, } \\ \text { when we Learn Programming? }\end{array}\right\} \begin{aligned} & \text { = We have studied lots of little tricks } \\ & \text { " And we have learned that programming is just the } \\ & \text { act of breaking down big problems that we cant } \\ & \text { solve, into little problems that we can solve using } \\ & \text { the tricks we have learned }\end{aligned}$
$\left.\begin{array}{|c|c|}\hline \text { What is the Skill we Learn, } \\ \text { when we Learn Programming? }\end{array}\right\} \begin{aligned} & \text { = We have studied lots of little tricks } \\ & \text { " And we have learned that programming is just the } \\ & \text { act of breaking down big problems that we cant } \\ & \text { solve, into little problems that we can solve using } \\ & \text { the tricks we have learned }\end{aligned}$


```
public void func() 
{
doSomething();
    doSomethingElse();
    doOneLastThing();} "little problems" that we
}
ttle problems" that we
can easily solve
```

CSE1030 - Lecture \#19

- Introduction to Recursion
- Execution Stack
- Example: Reversing a String
- Example: Mathematical Bisection
- We're Done!

Here are some of our Tricks

- To compare two things - use "if"
- To do something a bunch of times - "loop"
- Have a concept that has several parts? - make a class and use instance data ("has-a")
- To remember a relatively unchanging number of objects - use an Array
" To calculate a logarithm - use "Math.log"
" These all represent "little problems" that we can solve

Problem Decomposition:

Turning a "big" problem into "little" ones

- Example Problem: Write a function that returns the factorial of an integer:

$$
x!=x *(x-1) *(x-2) * \ldots * 3 * 2 * 1
$$

We naturally break the problem down, in this case to: 1 multiply operation, inside 1 loop

New Idea for Today!

- We don't have to decompose a "big" problem down only into little problems that we can solve
- Some problems can be decomposed into a smaller version of the same problem
- In this case, we don't have to solve the "big" problem or even the "smaller" problem, instead we can get away with solving a very very small version of the problem

Think about that Factorial again...

- We can rewrite the factorial equation,

- like this instead:

- "Naive Translation" into code:

So far...

- The programs we have seen all look like this...

... we have only seen functions that call other functions
- What happens if a function calls itself?

Output (1/2)

>java factorialRecursive factorial(10) called!	
factorial(9) called!)
factorial(8) called!	
factorial(7) called!	
factorial(6) called!	The Good News is
factorial(5) called!	
factorial(4) called!	
factorial (3) called! function can c	
factorial(2) called!factorial(1) called!	
factorial(1) called! factorial(0) called!	
factorial(-1) called! \longleftarrow But we didn't stop	
factorial(-3) called! at a reasonable spot	
factorial(-4) called! (is there anything we	
factorial(-6) called!	can do about this?)
. (more on next slide)	

Output (2/2)

factorial(-4354) called!
factorial (-4355) called!
factorial(-4356) called
factorial (-4357) called
factorial(-4358) called
n" java.lang.StackOverflowError (Unknown Source) sun.nio.cs.SingleByteEncoder.encodeLoop(Unknown Source)
Jan.nio.charset.CharsetEncoder.encode(Unknown Source)
at sun.nio.cs.StreamEncoder.implWrite (Unknown Source)
at sun.nio.cs.StreamEncoder.write (Unknown Source)
at java.io. OutputStreamWriter.write(Unknown Source)
at java.io. BufferedWriter.flushbuffer(Unknown Source)
at java.io. PrintStream.write (Unknown Source)
at java.io. PrintStream.print (Unknown Source)
at java.io. PrintStream.println(Unknown Source)
at java.io. PrintStream.println(Unknown Source)
at factorialRecursive.factorial(factorialRecursive.java:6) at factorialRecursive.factorial(factorialRecursive.java:13) at factorialRecursive.factorial(factorialRecursive. java:13 at factorialRecursive.factorial(factorialRecursive.java:13 (the last line repeats about 4000 times)

What did we see?

- A function that calls itself works!
- But it didn't terminate... it just kept going
- Eventually the Java Virtual Machine ran out of "Stack" space
- We'll talk about the Stack in a few slides
- Question: How can we make the program terminate?

Terminating...

- Large values of factorial can be daunting, but the smallest values are easy:

$$
\begin{aligned}
& 2!=2 \\
& 1!=1 \\
& 0!=1
\end{aligned}
$$

- Remember we said we could get away with: "solving a very very small version of the problem"? Let's use: 0! = $\mathbf{1}$

Terminating...

- Let's add one "if" statement to check for the factorial of zero..

```
static int factorial(int x)
```

 System.out.println("factorial(" + x + ") called!");
 if ($\mathrm{x}==0$)
elseturn 1;
else
3
static public void main(String[] args)
int fact $=$ factorial(10);
System.out.println("fact = " + fact);

Output of Improved Version:
>java factorialRecursive
factorial(10) called!
factorial(9) called!
factorial(8) called!
factorial(7) called! factorial(6) called! factorial(5) called! factorial(4) called! factorial(3) called! factorial(2) called! factorial(1) called! factorial(0) cal
fact $=3628800$

How do the Result values get Returned?

- Same functionality, more print statements...

```
static int factorial(int x)
System.out.println("factorial(" + x + ") called!");
    if(x == 0)
    {
        System.out.println("factorial(0) returned: 1");
        return 1;
    }
    els
        int retval = x * factorial(x-1);
        System.out.println("factorial(" + x + ")"
            + " returned: " + retval)
}
}
```

```
>java factorialRecursiveVerbose
factorial(10) called!
factorial(9) called
factorial(8) called
factorial(7) called!
factorial(5) called
factorial(4) called!
factorial(3) called!
factorial(2) called
factorial(0) called
factorial(0) returned: 1
factorial(1) returned: 1
factorial(2) returned: 2
factorial(3) returned: 6
factorial(3) returned: 6
lactorial(4) returned: 24
factorial(5) returned: 120
factorial(7) returned: 5040
factorial(8) returned: 40320
factorial(9) returned: 362880
factorial(9) returned: 362880
factorial(1, returned: 3628800
fact = 3628800
```


Let's Re-examine the Code

Definition of Recursion

- A function is Recursive if it calls itself (directly or indirectly) from within its own body
- The two components of a Recursive Solution

1. A solution to the problem that involves a simpler instance of the problem (called the "Recursive Case")
2. A Direct Solution to a simple version of the problem (called the "Termination Case", or "Base Case")

- Also, notice that we have seen two solutions to the factorial problem - one that is recursive, and one that is not recursive ("iterative")..

Iterative versus Recursive Solutions

```
int factorial(int x)
    {
    if(x == 0)
        return 1;
    else
}
return x * factorial(x-1)
```

int factorial(int x)
${ }^{\text {int }}$
f int answer = 1;
for (int $i=1 ; i<=x ; i++)$
answer *= i;
return answer;
3
Recursive Solution

Iterative versus Recursive Solutions

- There is nothing particularly special about Recursion versus Iteration
- Any recursive algorithm can be converted into an iterative algorithm, and vice-versa
- The decision regarding whether to apply iteration or recursion depends upon the nature of the problem
- Most problems are best approached with iteration
- But some problems are simpler to approach with recursion

Advantages and Disadvantages of Recursion

- Advantages
- Some problems can be coded much more simply with recursion (we'll see more examples soon)
- Some other languages are optimised for recursion ("functional languages", like Haskell, Erlang, Lisp)
- Disadvantages
- Can use more memory than Iteration (in particular, can use more valuable execution stack memory)
- Can be less efficient (poorly designed recursion can cause intermediate values to be calculated more than once)

CSE1030 - Lecture \#19

- Introduction to Recursion
- Execution Stack
- Example: Reversing a String
- Example: Mathematical Bisection
- We're Done!

How is Recursion Possible?

- Next we are going to discuss a mechanism that the Java Virtual Machine uses when executing programs
- There is a thing called an "Execution Stack" that is used to keep the variables within functions separate from one another (remember "Variable Scope"?)
- It is the Execution Stack that makes recursion possible

How does Java keep the "parameter" variables straight?

class example

${ }^{\text {cla }}$
public static void main(String[] args)
\{
int answer $=\mathrm{A}(0)$;
System.out.println("answer = " + answer);
\}
static int $A(i n t$ parameter) \{ return $B($ parameter +1); \}
static int $B(i n t$ parameter) $\{$ return $C(p a r a m e t e r+1) ; ~\}$
static int C(int parameter) \{ return D(parameter + 1); \}
static int $D(i n t$ parameter) \{ return parameter + 1; \}

CSE1030 29

CSE1030 - Lecture \#19

- Introduction to Recursion
- Execution Stack
- Example: Reversing a String
- Example: Mathematical Bisection
- We're Done!

Example: Reversing a String

- main():

```
class reverseRecursive
static String reverse(String s)
    static public void main(String[] args)
        {
            String before = "ABCDEFG"
            String after = reverse(before);
                System.out.println("after = " + after);
    }
```

- Output: >java reverseRecursive after = GFEDCBA

CSE1030 - Lecture \#19

- Introduction to Recursion
- Execution Stack
- Example: Reversing a String
- Example: Mathematical Bisection
- We're Done!

Mathematical Bisection

- Bisection is a technique used to find the point where a function crosses zero (to find \mathbf{x} where $\mathbf{f}(\mathbf{x})=\mathbf{0}$)
- We sandwich the zero between two points (start \& end)

CSE1030 34

Mathematical Bisection

- We can use bisection to calculate the value of π, because the point in $x \in[2,4]$ where $\sin (\mathbf{x})=\mathbf{0}$, is exactly where $\mathbf{x}=\pi$

CSE1030 40

Mathematical Bisection: Code

```
class zero
{
    static double f(double x)
        return Math.sin(x);
```



```
Just for convenience, we'll use \(f(x)\) to denote the function that we are zeroing \}
static final double errorTolerance \(=0.000000000000001\);
```


\uparrow

```
How much accuracy do we want? How close should start \& end get? static public void main(String[] args)
\{
System.out.println(" Pi = " + bisect(2.0, 4.0));
\(\}^{\}}\)
\}
CSE1030 41
```

```
static double bisect(double start, double end)
{ double mid = (start + end) / 2.0;
    if(Math.abs(start - end) < errorTolerance)
        return mid;
    if(f(mid) > 0)
        return bisect(mid, end);
    else
        return bisect(start, mid);
}

\section*{Output \\ >java zeroRecursive Pi \(=3.1415926535897936\)}
- With this program we calculate the digits of Pi
- This algorithm can be used to achieve any accuracy we want (by reducing the value of the "errorTolerance"
- Notice that in this example (as in the previous examples) the recursive solution is shorter

CSE1030 - Lecture \#19
- Introduction to Recursion
- Execution Stack
- Example: Reversing a String
- Example: Mathematical Bisection
- We're Done!
\begin{tabular}{|c|}
\hline \\
Next topic... \\
Recursion I \\
\\
\\
\\
\hline
\end{tabular}```

