
Lecture #18

CSE1030 – Introduction to
Computer Science II

Linked Lists – Coding Examples

CSE1030 2

CSE1030 – Lecture #18
Review
Iterating
Inserting
Deleting
Extensions to Singly Linked-Lists
Doubly-Linked-Lists
We're Done!

CSE1030 3

Linked List Terminology

head

null

Person {“Alan”, 26}

Person {“Becky”, 28}

Person {“Frank”, 21}

Person {“Jack”, 26}

Person {“Joe”, 28}

Data

Head of the List

Tail of the List

A Node

'null' marks the end
of the Linked List

Head Pointer

CSE1030 4

Inserting…

p

null

Person {“Alan”, 26}

Person {“Becky”, 28}

Person {“Frank”, 21}

Person {“Jack”, 26}

Person {“Joe”, 28}

Person {“Henry”, 26}

Only requires
changing 2
arrows…

… and adding 1
new little block of
memory.

CSE1030 5

Deleting…

p

null

Person {“Alan”, 26}

Person {“Becky”, 28}

Person {“Frank”, 21}

Person {“Jack”, 26}

Person {“Joe”, 28}

Deleting "Frank"
only requires us
to update 1
pointer – Fast!

CSE1030 6

CSE1030 – Lecture #18
Review
Iterating
Inserting
Deleting
Extensions to Singly Linked-Lists
Doubly-Linked-Lists
We're Done!

CSE1030 7

Linked List Iteration

head

null

"apple"

"banana"

"cherries"

"fig"

"grapes"

pointer

Iterating through a
list means we have
to construct a
"pointer", and move
the pointer along
the list, one item at
a time.

We accomplish this
by using the "next"
pointers

CSE1030 8

Linked List Iteration

head

null

"apple"

"banana"

"cherries"

"fig"

"grapes"

pointer

Iterating through a
list means we have
to construct a
"pointer", and move
the pointer along
the list, one item at
a time.

We accomplish this
by using the "next"
pointers

CSE1030 9

Linked List Iteration

head

null

"apple"

"banana"

"cherries"

"fig"

"grapes"

pointer

Iterating through a
list means we have
to construct a
"pointer", and move
the pointer along
the list, one item at
a time.

We accomplish this
by using the "next"
pointers

CSE1030 10

Linked List Iteration

head

null

"apple"

"banana"

"cherries"

"fig"

"grapes"

pointer

Iterating through a
list means we have
to construct a
"pointer", and move
the pointer along
the list, one item at
a time.

We accomplish this
by using the "next"
pointers

CSE1030 11

Linked List Iteration

head

null

"apple"

"banana"

"cherries"

"fig"

"grapes"

pointer

Iterating through a
list means we have
to construct a
"pointer", and move
the pointer along
the list, one item at
a time.

We accomplish this
by using the "next"
pointers

CSE1030 12

Example Code: iteration

class Node
{

String data;
Node next;

Node(String data, Node next)
{

this.data = data;
this.next = next;

}
}

This defines the
Node class

CSE1030 13

// create a new empty linked-list:
Node head = null;

// insert a node or two:
head = new Node("apple",

new Node("banana",
new Node("cherries",

new Node("fig",
new Node("grapes", null)

)
)

)
);

Create
the nodes
of the
linked-list

Init the
head pointer

CSE1030 14

// now we want to output the list:
Node pointer = head;

int i;
while(pointer != null)
{

System.out.println(" " + i++ + " " + pointer.data);

pointer = pointer.next;
}

System.out.println("Done!");

Start at the head
("top") of the list

Use the Data

Move the pointer
on down the list

CSE1030 15

Output: iteration

>java iteration
0 apple
1 banana
2 cherries
3 fig
4 grapes

Done!

CSE1030 16

CSE1030 – Lecture #18
Review
Iterating
Inserting
Deleting
Extensions to Singly Linked-Lists
Doubly-Linked-Lists
We're Done!

CSE1030 17

Inserting Nodes into a Linked-List
Insertion requires us to create a
new Node, and update a pointer

There are three cases:
1. Inserting at the head of the list
2. Inserting at the end of the list
3. Inserting in the middle

CSE1030 18

Inserting at the Beginning

head

null

"banana"

"cherries"

"fig"

"grapes"

To insert at the
beginning of the list
we have to change
the head pointer…

and we have to add
a new node that
points to the rest of
the list.

CSE1030 19

Inserting at the Beginning

head

null

"apple"

"banana"

"cherries"

"fig"

"grapes"

Here we add the
new Node

Note that the node's
'next' pointer points
to where the head
pointer currently
points (the former
top of the list)

CSE1030 20

Inserting at the Beginning

head

null

"apple"

"banana"

"cherries"

"fig"

"grapes"

Next we update the
head pointer and
we're done

Let's look at the
code…

CSE1030 21

Example Code: insertAtHead

class Node
{

String data;
Node next;

Node(String data, Node next)
{

this.data = data;
this.next = next;

}
}

CSE1030 22

// create a new empty linked-list:
Node head = null;

void insertAtHead(String data)
{

// create the new node
// note that the 'next' pointer for the new
// node must point to the current Head node
Node newNode = new Node(data, head);

// now, update the head pointer
head = newNode;

}

Create the
new node,
with data
and next
pointer

Update
the Head
pointer

CSE1030 23

// create a new empty linked-list:
head = null;

// insert a node or two:
insertAtHead("apple");
insertAtHead("banana");
insertAtHead("cherries");
insertAtHead("fig");
insertAtHead("grapes");

// now we want to output the list:
Node pointer = head;

int i = 0;
while(pointer != null)
{

System.out.println(" " + i++ + " " + pointer.data);
pointer = pointer.next;

}

System.out.println("Done!");

Inserts some
Nodes

New Empty
Linked-List

Output the
List

CSE1030 24

Output: insertAtHead

>java insertAtHead
0 grapes
1 fig
2 cherries
3 banana
4 apple

Done!

Reverse
Alphabetical
Order,
Why?

CSE1030 25

Inserting at the End

To insert at the end
of the list we have
to change the 'next'
pointer of the last
node…

and we have to add
a new node with a
'next' pointer that is
null.

head

null

"apple"

"banana"

"cherries"

"fig"

CSE1030 26

Inserting at the End

head

null

"apple"

"banana"

"cherries"

"fig"

"grapes"

To insert at the end
of the list we have
to change the 'next'
pointer of the last
node…

and we have to add
a new node with a
'next' pointer that is
null.

Let's look at the
code

CSE1030 27

Example Code: insertAtEnd

class Node
{

String data;
Node next;

Node(String data, Node next)
{

this.data = data;
this.next = next;

}
}

CSE1030 28

void insertAtEnd(String data)
{

// create the new node
// the 'next' pointer will be 'null'
Node newNode = new Node(data, null);

// Special Case: if the list is empty
if(head == null)
{

head = newNode;
return;

}

// otherwise, we're looking for the
// end of the list, which is the node
// whose 'next' pointer is null
Node pointer = head;
while(pointer.next != null)

pointer = pointer.next;

// update the tail Node 'next' pointer
pointer.next = newNode;

}

Create the
new node,
with data and
next pointer

Find the
Tail Node
of the List

Handle
Empty
List

Update 'next'
pointer in the
Tail Node

CSE1030 29

// create a new empty linked-list:
head = null;

// insert a node or two:
insertAtEnd("apple");
insertAtEnd("banana");
insertAtEnd("cherries");
insertAtEnd("fig");
insertAtEnd("grapes");

// now we want to output the list:
Node pointer = head;

int i = 0;
while(pointer != null)
{

System.out.println(" " + i++ + " " + pointer.data);
pointer = pointer.next;

}

System.out.println("Done!");

Inserts some
Nodes

New Empty
Linked-List

Output the
List

CSE1030 30

Output: insertAtEnd

>java insertAtEnd
0 apple
1 banana
2 cherries
3 fig
4 grapes

Done!

This time in
Alphabetical
Order,
Why?

CSE1030 31

Inserting in the Middle

To insert in the
middle of the list we
have to find the
node above where
the new node
should go…

because that's the
node where the
'next' pointer has to
be changed.

Let's look at the
code…

head

null

"apple"

"banana"

"fig"

"grapes"

CSE1030 32

Inserting in the Middle

head

null

"apple"

"banana"

"cherries"

"fig"

"grapes"

To insert in the
middle of the list we
have to find the
node above where
the new node
should go…

because that's the
node where the
'next' pointer has to
be changed.

CSE1030 33

Example Code: insertAtMiddle

class Node
{

String data;
Node next;

Node(String data, Node next)
{

this.data = data;
this.next = next;

}
}

CSE1030 34

boolean insertAtMiddle(int location, String data)
{

// special case for inserting
// at the head of the list
if(location == 0)
{

head = new Node(data, head);
return true;

}

// if the list is empty, and our
// location isn't #0, then there's
// a problem
else if(head == null)

return false;

Handle
insert at
the Head
of the List

Handle invalid
location number

CSE1030 35

// find the correct spot in the list
int counter = 1;
Node pointer = head;
while(counter < location

&& pointer.next != null)
{

pointer = pointer.next;
counter += 1;

}

// did we run out of list before we
// reached the desired location?
if(counter != location)

return false;

// create the new node, the 'next' pointer
// should point to the next node in the list
Node newNode = new Node(data, pointer.next);

// update the 'next' pointer
pointer.next = newNode;

return true;
}

Find the
node above
the specified
location

New
node

Update 'next' pointer
of the node above the
new node

Handle invalid
location number

CSE1030 36

// create a new empty linked-list:
head = null;

// insert a node or two:
head = new Node("apple",

new Node("banana",
new Node("cherries",

new Node("fig",
new Node("grapes", null)

)
)

)
);

// next insert a new node #3
insertAtMiddle(3, "dates");

// next insert a new node #6
insertAtMiddle(6, "watermelon");

// now we want to output the list:

Inserts a new
Node # 6

Output the List Omitted…

Inserts a new
Node # 3

CSE1030 37

Output: insertAtMiddle

>java insertAtMiddle
0 apple
1 banana
2 cherries
3 dates
4 fig
5 grapes
6 watermelon

Done!

Node # 3 is
"Dates"

Node # 6 is
"Watermelon"

CSE1030 38

Another Example: insertInOrder

class Node
{

String data;
Node next;

Node(String data, Node next)
{

this.data = data;
this.next = next;

}
}

CSE1030 39

void insertInOrder(String data)
{

// special case for inserting into
// an empty list
if(head == null)
{

head = new Node(data, null);
return;

}

// do we come before the first element?
// then we have to update the head
// pointer
if(head.data.compareTo(data) > 0)
{

head = new Node(data, head);
return;

}

Handle
insert into
empty List

Handle
insert at
the Head
of the List

CSE1030 40

// find the correct spot in the list
Node pointer = head;
while(pointer.next != null

&& pointer.next.data.compareTo(data) < 0)
pointer = pointer.next;

// create the new node, the 'next' pointer should
// point to the next node in the list
Node newNode = new Node(data, pointer.next);

// update the 'next' pointer
// of the previous node
pointer.next = newNode;

}

Find the
node
above the
correct
spot

New
node

Update 'next' pointer
of the node above the
new node

CSE1030 41

// create a new empty linked-list:
head = null;

// insert a node or two:
insertInOrder("cherries");
insertInOrder("watermelon");
insertInOrder("fig");
insertInOrder("banana");
insertInOrder("dates");
insertInOrder("apple");
insertInOrder("grapes");

// now we want to output the list:
Node pointer = head;

int i = 0;
while(pointer != null)
{

System.out.println(" " + i++ + " " + pointer.data);
pointer = pointer.next;

}

System.out.println("Done!");

Here we're
inserting the
nodes into an
empty linked-list
in a 'random'
order

CSE1030 42

Output: insertInOrder

>java insertInOrder
0 apple
1 banana
2 cherries
3 dates
4 fig
5 grapes
6 watermelon

Done!

The Nodes are in
alphabetical order,
although they
were not inserted
in that order

CSE1030 43

CSE1030 – Lecture #18
Review
Iterating
Inserting
Deleting
Extensions to Singly Linked-Lists
Doubly-Linked-Lists
We're Done!

CSE1030 44

Deleting Nodes from a Linked-List
Deletion only requires us to update a
pointer

There are three cases:
1. Deleting from the head of the list
2. Deleting from the end of the list
3. Deleting from the middle

CSE1030 45

Deleting from the Beginning

head

null

"apple"

"banana"

"cherries"

"fig"

"grapes"

All we have to do is
change the head
pointer

Java's "Garbage
Collection" will
figure-out that there
is no longer a
pointer to the first
node, and destroy it

CSE1030 46

Deleting from the Beginning

head

null

"apple"

"banana"

"cherries"

"fig"

"grapes"

Here we move the
head pointer one
node down the
list…

CSE1030 47

Deleting from the Beginning

head

null

"banana"

"cherries"

"fig"

"grapes"

… and now the old
head node is gone

let's look at the
code…

CSE1030 48

Example Code: deleteFromHead

class Node
{

String data;
Node next;

Node(String data, Node next)
{

this.data = data;
this.next = next;

}
}

CSE1030 49

Node deleteFromHead()
{

// if the list is empty, then there's
// nothing to do
if(head == null)

return null;

// remember the old head node, so
// we can return it (just in case
// the user wants it)
Node oldHead = head;

// now, update the head pointer
head = head.next;

return oldHead;
}

Handle
Empty
List

Grab a reference
to the node we're
deleting, to return

Here's where we
delete the node

Return a reference to the
deleted node

CSE1030 50

// create a new empty linked-list:
head = null;

// insert a node or two:
head = new Node("apple",

new Node("banana",
new Node("cherries",

new Node("fig",
new Node("grapes", null)

)
)

)
);

// now delete a node...
Node first = deleteFromHead();
System.out.println("Deleted: " + first.data);

// now delete a node...
Node second = deleteFromHead();
System.out.println("Deleted: " + second.data);

// now we want to output the list:

Delete "apple"

Delete
"banana"

CSE1030 51

Output: deleteFromHead

>java deleteFromHead
Deleted: apple
Deleted: banana
0 cherries
1 fig
2 grapes

Done!

Two deleted
nodes …

…are not in the
list anymore

CSE1030 52

Deleting from the End

head

null

"apple"

"banana"

"cherries"

"fig"

"grapes"

To delete from the
end of the list we
have to change the
'next' pointer of the
second-last
node…

CSE1030 53

Deleting from the End

head

null

"apple"

"banana"

"cherries"

"fig"

"grapes"

null

To delete from the
end of the list we
have to change the
'next' pointer of the
second-last node
to null…

CSE1030 54

Deleting from the End

head

null

"apple"

"banana"

"cherries"

"fig"

To delete from the
end of the list we
have to change the
'next' pointer of the
second-last node
to null…

Let's look at the
code

CSE1030 55

Example Code: deleteFromEnd

class Node
{

String data;
Node next;

Node(String data, Node next)
{

this.data = data;
this.next = next;

}
}

CSE1030 56

Node deleteFromEnd()
{

// if the list is empty, then there's
// nothing to do
if(head == null)

return null;

// if the list only has 1 node
// delete from head of list
if(head.next == null)
{

Node oldHead = head;
head = null;
return oldHead;

}

If there is only 1
node, then this is the
same as "delete from
head of the list"

Handle
Empty
List

CSE1030 57

// otherwise, we're looking for the
// second-last node of the list, which
// is the node whose '.next.next'
// pointer is null
Node pointer = head;
while(pointer.next.next != null)

pointer = pointer.next;

// remember the deleted node, so
// we can return it (just in case
// the user wants it)
Node deletedNode = pointer.next;

// now, update the 'next' pointer
pointer.next = null;

return deletedNode;
}

Grab a reference
to the node we're
deleting, to return

Here's where we
delete the node

Return a reference to the
deleted node

Find the
second from
last node

CSE1030 58

// create a new empty linked-list:
head = null;

// insert a node or two:
head = new Node("apple",

new Node("banana",
new Node("cherries",

new Node("fig",
new Node("grapes", null)

)
)

)
);

// now delete a node...
Node first = deleteFromEnd();
System.out.println("Deleted: " + first.data);

// now delete a node...
Node second = deleteFromEnd();
System.out.println("Deleted: " + second.data);

// now we want to output the list:

Delete
"grapes"

Delete
"fig"

CSE1030 59

Output: deleteFromEnd

>java deleteFromEnd
Deleted: grapes
Deleted: fig
0 apple
1 banana
2 cherries

Done!

Two deleted
nodes …

…are not in the
list anymore

CSE1030 60

Deleting from the Middle

head

null

"apple"

"banana"

"cherries"

"fig"

"grapes"

To delete from the
middle of the list we
have to find the
node above the
node we want to
delete…

because that's the
node where the
'next' pointer has to
be changed.

CSE1030 61

Deleting from the Middle

head

null

"apple"

"banana"

"fig"

"grapes"

"cherries"

Once we have
updated the
preceding 'next'
pointer, the skipped
node has been
removed from the
list

CSE1030 62

Deleting from the Middle

Let's look at the
code…

head

null

"apple"

"banana"

"fig"

"grapes"

CSE1030 63

Example Code: deleteFromMiddle

class Node
{

String data;
Node next;

Node(String data, Node next)
{

this.data = data;
this.next = next;

}
}

CSE1030 64

static Node deleteFromMiddle(int location)
{

// empty list?
if(head == null)

return null;

// location is the top of the list
if(location == 0)
{

Node oldHead = head;
head = head.next;
return oldHead;

}

Deleting from
location #0 is the
same as "delete
from head of the
list"

Handle
Empty
List

CSE1030 65

// otherwise, we're looking for the
// node above the one we want to delete
int counter = 1;
Node pointer = head;
while(counter < location

&& pointer.next != null
&& pointer.next.next != null)

{
pointer = pointer.next;
counter += 1;

}

// did we run out of list before we
// reached the desired location?
if(counter != location)

return null;

Handle invalid
location number

Find the node
above the one
we want to
delete

Why is
this here?

CSE1030 66

// remember the deleted node, so
// we can return it
Node deletedNode = pointer.next;

// now, update the 'next' pointer
pointer.next = pointer.next.next;

return deletedNode;
}

Grab a reference
to the node we're
deleting, to return

Here's where we
delete the node

Return a reference to the
deleted node

CSE1030 67

// create a new empty linked-list:
head = null;

// insert a node or two:
head = new Node("apple",

new Node("banana",
new Node("cherries",

new Node("fig",
new Node("grapes", null)

)
)

)
);

// now delete a node...
Node first = deleteFromMiddle(2);
System.out.println("Deleted: " + first.data);

// now delete a node...
Node second = deleteFromMiddle(3);
System.out.println("Deleted: " + second.data);

// now we want to output the list:

Delete
"cherries"

Delete
"grapes"

CSE1030 68

Output: deleteFromMiddle

>java deleteFromMiddle
Deleted: cherries
Deleted: grapes
0 apple
1 banana
2 fig

Done!

Two deleted
nodes …

…are not in the
list anymore

CSE1030 69

Another Example: deleteByValue

class Node
{

String data;
Node next;

Node(String data, Node next)
{

this.data = data;
this.next = next;

}
}

CSE1030 70

static Node deleteByValue(String data)
{

// empty list?
if(head == null)

return null;

// location is the top of the list
if(head.data.equals(data))
{

Node oldHead = head;
head = head.next;
return oldHead;

}

Check whether
we're deleting
from the head of
the list, and
handle it

Handle
Empty
List

CSE1030 71

// otherwise, we're looking for the
// node above the one we want to delete
Node pointer = head;
while(pointer.next != null

&& !pointer.next.data.equals(data))
{

pointer = pointer.next;
}

// not found?
if(pointer.next == null)

return null;

The data to be
deleted is not
found

Find the node
above the one
we want to
delete

CSE1030 72

// remember the deleted node, so
// we can return it
Node deletedNode = pointer.next;

// now, update the 'next' pointer
pointer.next = pointer.next.next;

return deletedNode;
}

Grab a reference
to the node we're
deleting, to return

Here's where we
delete the node

Return a reference to the
deleted node

CSE1030 73

// create a new empty linked-list:
head = null;

// insert a node or two:
head = new Node("apple",

new Node("banana",
new Node("cherries",

new Node("fig",
new Node("grapes", null)

)
)

)
);

// now delete a node...
Node first = deleteByValue("banana");
System.out.println("Deleted: " + first.data);

// now delete a node...
Node second = deleteByValue("fig");
System.out.println("Deleted: " + second.data);

// now we want to output the list:

Delete
"banana"

Delete
"fig"

CSE1030 74

Output: deleteByValue

>java deleteByValue
Deleted: banana
Deleted: fig
0 apple
1 cherries
2 grapes

Done!

Two deleted
nodes …

…are not in the
list anymore

CSE1030 75

Summary of Singly Linked-List
Operations

We have to check whether the operation
involves the top of the list, and handle that case
separately, because those operations involve
changing the head pointer

Otherwise, we must find the node that is 'above'
the one we are interested in, because that's the
node whose 'next' pointer we have to adjust

CSE1030 76

CSE1030 – Lecture #18
Review
Iterating
Inserting
Deleting
Extensions to Singly Linked-Lists
Doubly-Linked-Lists
We're Done!

CSE1030 77

Common Singly Linked-List
Enhancements

There are two common variations on
singly linked-lists:

Tail pointers

Circular Linked-Lists

CSE1030 78

Linked List with Tail Pointer

head

null

Person {“Alan”, 26}

Person {“Becky”, 28}

Person {“Frank”, 21}

Person {“Jack”, 26}

Person {“Joe”, 28}

'Tail Pointer'

tail

CSE1030 79

Tail Pointers
A Tail Pointer allows the implementer to access
the tail quickly

This makes it fast to add nodes to the tail of the
linked list

By adding to the tail, and removing from the head,
the nodes stay in the order that they were inserted,
instead of being reversed.

As nodes are added or deleted, the Tail Pointer
may have to be updated too

CSE1030 80

Circular Linked Lists

head Person {“Alan”, 26}

Person {“Becky”, 28}

Person {“Frank”, 21}

Person {“Jack”, 26}

Person {“Joe”, 28}

The 'next'
pointer of the

last node
loops back to

the top

CSE1030 81

Circular Linked-Lists
Circular Linked-Lists are useful if the data
naturally form a loop, for example:

The vertexes around a polygon
Algorithms that provide 'fairness' in the
allocation to resources
'Round-Robin' waiting lists
List of Directions of objects around you

CSE1030 82

CSE1030 – Lecture #18
Review
Iterating
Inserting
Deleting
Extensions to Singly Linked-Lists
Doubly-Linked-Lists
We're Done!

CSE1030 83

Doubly Linked-List

head

null

Person {“Alan”, 26}

Person {“Becky”, 28}

Person {“Frank”, 21}

Person {“Jack”, 26}

Each Node has a
pointer that points

forward ('next')
and another one that

points backward
('previous')

tail

null

CSE1030 84

Doubly Linked-Lists
Advantages:

Fast to add nodes at either end
Easy to iterate in either direction
And it is fast to insert a node into the middle
(we don’t need to iterate to find the previous
node – we already have a pointer directly to it)

But…
And more memory space may be required to
store the extra 'previous' pointers

The code is a little more complicated
because more node pointers need to be
modified to insert or delete a node

CSE1030 85

CSE1030 – Lecture #18
Review
Iterating
Inserting
Deleting
Extensions to Singly Linked-Lists
Doubly-Linked-Lists
We're Done!

CSE1030 86

Next topic…

Recursion I

