CSE1030 — Introduction to
Computer Science 11

Lecture #17

Introduction to Linked Lists

CSE1030 — Lecture #17

Review

>

= |ntroduction to Linked Lists

= We're Done!

CSE1030 2

Remember the Array Insertion Problem?

= Want to add "Henry" but Preserve the

Order

By

[

.—)Q Person {“Alan”, 26}

[

Person {“Becky”, 28}

[2]

Person {“Frank”, 21}

Bl

—

Person {“Jack”, 26}

[4

Person {*Joe”, 28}

[5]

Person {“Sally”, 21}

[6]

—>null

[

—>null

[8]

—>null

[9

—>null

CSE1030 3

Need to Insert a Gap...
= (Which is Time Consuming)

By

o

—)Q Person {“Alan”, 26}

=
®

Person {“Becky”, 28}

=
[]

Person {“Frank”, 21}

S

Person {“Jack”, 26}

=

Person {*Joe”, 28}

A

>

g

=

—>null

)

—>null

o |9 19 |aalale

'S

—>null

—

CSE1030 4

Need to Insert a Gap...
= (Which is Time Consuming)

b

[

._)* Person {“Alan”, 26}

[

o Person {“Becky”, 28}

[2

Bl ¢

|

[4]

L Person {“Frank”, 21}

[5]

[6]

L Person {*Jack”, 26}

o} Person {“Joe”, 28}
o Person {“Sally”, 21}

1]

[8]

[

—> null
o—> null
—> null

CSE1030 5

Need to Insert a Gap...
= (Which is Time Consuming)

o

.—)* Person {“Alan”, 26}

T

=

o Person {“Becky”, 28}

i)

W

L Person {“Frank”, 21}

=

3

o Person {“Joe”, 28}

S

of Person {“Henry”, 26} | <«<———
L Person {*Jack”, 26}

o Person {“Sally”, 21}

)

S22 |13 |2 |g

'S

—> null
o—> null
—> null

CSE1030 6

CSE1030 — Lecture #17

= Review

Introduction to Linked Lists

= We're Done!

CSE1030 7

Is there a way to do this Without Shifting?

@—) [0] ‘—)‘ Person {“Alan”, 26}
™K

(31 o> Foon Cooe |
{1 o> e |
8 o —>(Fmncsirm]

[6] e—> null
[7]1 o—> null
[8] e—> null
[9] e—> null

@ o—>{Fmcrmrin]
y

= The problem is that
the array is a single
contiguous block of
memory

= |nstead, if it was a
series of little blocks,
then we wouldn't
have to shift
anything...

CSE1030 8

How about we use lots of Little Blocks of
Memory, instead of 1 Big one?

-

@_’ ;__) P A2})« Each Little Block
v holds an arrow
o——>(Person {"Becky", 26} (reference, pointer)
; to the data
@——>| Person {“Frank”, 21}
; = Each Little Block
> (Person e 267) also has to provide
’ a way to find the
v next little block
> ez)
)
v

null CSE1030 9

Now, Inserting Henry is Easy!

[

=)
=
=
-

> (peon Car 75
) = This only required
\Z changing 2
——) arrows. ..
?
N7

f__.
?
v .
> Femn ooz) = ... and adding 1
. new little block of
N

memory.
CSE1030 10

Implications

= We are still storing a collection of arrows
(or "references", or "pointers") as we did
when we used arrays

= But because the arrows are in their own
individual little pieces of memory, nothing
has to be shifted to insert new ones

= There are other benéefits too...

CSE1030 11

1 - Create a New Larger Array

More Implications

= Remember what a pain

Array Resizing was?

= And Inefficient too
= There is No Resizing with

the New Approach!

3 — Switch over to the new array

CSE1030p 12

Deletion is also Easy

—>| Person {“Alan”, 26}

> (o B 25

t=——3| Person {*Jack”, 26}

t=——3| Person {“Joe”, 28}

= Deleting "Frank"
only requires us
to update 1
pointer — Fast!

CSE1030 13

Negative Implications? Accessing Data

> (Faron o 2

-

—)_Person {“Becky”, 28}

= Person {“Frank”, 21}

=3 Person {"“Jack”, 26}

t=—3| Person {*Joe”, 28}

>
=
-
-

(—-OT<-0T(-0T(-0T<-OI

] .—H Person {“Alan”, 26}
19
| o> (o trme.z)
] ")
]

b o

of—>{ Faron cmoc 257
[5)_ef—>{Feron sty
[6] e—> null
[7]1 o> null
[8] e—> null
[9] o—> null

CSE1030 14

Arrays

Good:

= Access to any element is very
fast: p[i]

= Adding / Deleting from the End
is Fastest
(but can cause Resizing)

= Efficient on Memory
(only 1 arrow per Data item)

= But empty slots waste memory

Bad:

= Insertion / Deletion anywhere
but the end of the array

= Resizing

versus Linked Lists

Good:
= Insertion / Deletion is easy
(just update some arrows)
= Insertion or Deletion at the
Top of the list is Fastest
= There is no "Resizing Cost"

Bad:

= Accessing en element
requires us to iterate along
the List — Slower than array

= Wastes more Memory
(2 arrows per Data item)

= Although it, doesn't have
empty slots

CSE1030 15

Head Pointer

Linked List Terminology

[I T—
?
v
> (Fron e)
Head of the List .
v
@—1—| Person {“Frank”, 21}
= —
¥
> ()
?
v
Tail of the List | ————> [e—}—>{(Pamongaoenzay)
?
VI ; ‘null' marks the end
NUll <= ofthe Linked List ¢sE1030 16

CSE1030 — Lecture #17

= Review
= |ntroduction to Linked Lists

We're Done!

CSE1030 17

Next topic...

Linked Lists 11

CSE1030 18

