
Lecture #17

CSE1030 – Introduction to
Computer Science II

Introduction to Linked Lists

CSE1030 2

CSE1030 – Lecture #17
Review
Introduction to Linked Lists
We’re Done!

CSE1030 3

Remember the Array Insertion Problem?

[0]

[1]

[2]

[3]

[4]

p

[5]

[6]

[7]

[8]

[9]

null

null

null

null

Person {“Alan”, 26}

Person {“Becky”, 28}

Person {“Frank”, 21}

Person {“Jack”, 26}

Person {“Joe”, 28}

Person {“Sally”, 21}

Want to add "Henry" but Preserve the
Order

CSE1030 4

Need to Insert a Gap…

[0]

[1]

[2]

[3]

[4]

p

[5]

[6]

[7]

[8]

[9]

null

null

null

Person {“Alan”, 26}

Person {“Becky”, 28}

Person {“Frank”, 21}

Person {“Jack”, 26}

Person {“Joe”, 28}

Person {“Sally”, 21}

(Which is Time Consuming)

CSE1030 5

Need to Insert a Gap…

[0]

[1]

[2]

[3]

[4]

p

[5]

[6]

[7]

[8]

[9]

null

null

null

Person {“Alan”, 26}

Person {“Becky”, 28}

Person {“Frank”, 21}

Person {“Jack”, 26}

Person {“Joe”, 28}

Person {“Sally”, 21}

(Which is Time Consuming)

CSE1030 6

Need to Insert a Gap…

[0]

[1]

[2]

[3]

[4]

p

[5]

[6]

[7]

[8]

[9]

null

null

null

Person {“Alan”, 26}

Person {“Becky”, 28}

Person {“Frank”, 21}

Person {“Jack”, 26}

Person {“Joe”, 28}

Person {“Sally”, 21}

(Which is Time Consuming)

Person {“Henry”, 26}

CSE1030 7

CSE1030 – Lecture #17
Review
Introduction to Linked Lists
We’re Done!

CSE1030 8

Is there a way to do this Without Shifting?

[0]

[1]

[2]

[3]

[4]

p

[5]

[6]

[7]

[8]

[9]

null

null

null

null

Person {“Alan”, 26}

Person {“Becky”, 28}

Person {“Frank”, 21}

Person {“Jack”, 26}

Person {“Joe”, 28}

Person {“Sally”, 21}

The problem is that
the array is a single
contiguous block of
memory

Instead, if it was a
series of little blocks,
then we wouldn't
have to shift
anything…

CSE1030 9

How about we use lots of Little Blocks of
Memory, instead of 1 Big one?

p

null

Person {“Alan”, 26}

Person {“Becky”, 28}

Person {“Frank”, 21}

Person {“Jack”, 26}

Person {“Joe”, 28}

Each Little Block
holds an arrow
(reference, pointer)
to the data

Each Little Block
also has to provide
a way to find the
next little block

CSE1030 10

Now, Inserting Henry is Easy!
p

null

Person {“Alan”, 26}

Person {“Becky”, 28}

Person {“Frank”, 21}

Person {“Jack”, 26}

Person {“Joe”, 28}

Person {“Henry”, 26}

This only required
changing 2
arrows…

… and adding 1
new little block of
memory.

CSE1030 11

Implications

We are still storing a collection of arrows
(or "references", or "pointers") as we did
when we used arrays

But because the arrows are in their own
individual little pieces of memory, nothing
has to be shifted to insert new ones

There are other benefits too…

CSE1030 12

[0]

[1]

[2]

[3]

[4]

p_new

Person[] p_new = new Person[p.length + 5];

[5]

[6]

[7]

[8]

[9]

null

null

null

null

null

null

null

null

null

null

1 – Create a New Larger Array

[0]

[1]

[2]

[3]

[4]

p

p = p_new;

[5]

[6]

[7]

[8]

[9]

null

null

null

null

null

Person {“Sally”, 26}

Person {“Frank”, 28}

Person {“Joe”, 21}

Person {“Becky”, 26}

Person {“Alan”, 28}

p_new

3 – Switch over to the new array

[0]

[1]

[2]

[3]

[4]

p_new

for(int i = 0; i < p.length; i++)
p_new[i] = p[i];

[5]

[6]

[7]

[8]

[9]

null

null

null

null

null

[0]

[1]

[2]

[3]

[4]

p Person {“Sally”, 26}

Person {“Frank”, 28}

Person {“Joe”, 21}

Person {“Becky”, 26}

Person {“Alan”, 28}

2 – Copy the objects over to the new array

Remember what a pain
Array Resizing was?
And Inefficient too
There is No Resizing with
the New Approach!

More Implications

CSE1030 13

Deletion is also Easy

p

null

Person {“Alan”, 26}

Person {“Becky”, 28}

Person {“Frank”, 21}

Person {“Jack”, 26}

Person {“Joe”, 28}

Deleting "Frank"
only requires us
to update 1
pointer – Fast!

CSE1030 14

Negative Implications? Accessing Data

p

null

Person {“Alan”, 26}

Person {“Becky”, 28}

Person {“Frank”, 21}

Person {“Jack”, 26}

Person {“Joe”, 28}

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

null

null

null

null

Person {“Alan”, 26}

Person {“Becky”, 28}

Person {“Frank”, 21}

Person {“Jack”, 26}

Person {“Joe”, 28}

Person {“Sally”, 21}

p

CSE1030 15

Arrays versus Linked Lists
Good:

Insertion / Deletion is easy
(just update some arrows)
Insertion or Deletion at the
Top of the list is Fastest
There is no "Resizing Cost"

Bad:
Accessing en element
requires us to iterate along
the List – Slower than array
Wastes more Memory
(2 arrows per Data item)
Although it, doesn't have
empty slots

Good:
Access to any element is very
fast: p[i]
Adding / Deleting from the End
is Fastest
(but can cause Resizing)
Efficient on Memory
(only 1 arrow per Data item)
But empty slots waste memory

Bad:
Insertion / Deletion anywhere
but the end of the array
Resizing

CSE1030 16

Linked List Terminology

p

null

Person {“Alan”, 26}

Person {“Becky”, 28}

Person {“Frank”, 21}

Person {“Jack”, 26}

Person {“Joe”, 28}

Data

Head of the List

Tail of the List

A Node

'null' marks the end
of the Linked List

Head Pointer

CSE1030 17

CSE1030 – Lecture #17
Review
Introduction to Linked Lists
We’re Done!

CSE1030 18

Next topic…

Linked Lists II

