
Lecture #14

CSE1030 – Introduction to
Computer Science II

Graphical User Interface III

CSE1030 2

Goals for Today

Theoretical
GUI Containment Hierarchy

Practical
Layout

CSE1030 3

CSE1030 – Lecture #14
Review
Containment Hierarchy
Component Layout
We’re Done!

CSE1030 4

Review
GUI Elements

Widgets - buttons, textfields, etc.
JPanel - collect together GUI widgets
JFrame - is the main windows of the application

Input
Listeners
Events

Output
Widgets - JTextField
Drawing in a JPanel - Alien Attack

CSE1030 5

CSE1030 – Lecture #14
Review
Containment Hierarchy
Component Layout
We’re Done!

CSE1030 6

Containment Hierarchy
A window is made up of a number of
nested interactive objects (e.g.,
buttons, text fields, other windows)

Relationship of objects is expressed
by a containment hierarchy (a.k.a.
interactor tree)

based on screen geometry of objects
represents the hierarchy / nesting of
the objects

CSE1030 7

Containment Hierarchy - Example 1
Display Screen

“F:\cs160\Public” window
Inner Window

title bar
horizontal scroll bar
contents area

“CDJukebox” folder
“Home Ent…” folder
…

size control
…

“Web Newspaper” window
…

CSE1030 8

Containment Hierarchy - Example 2
Display Screen

Outer [black]

Result [tan]
Result String

Inner [green]

Keypad [Teal]

- button
+ button
0 button

= button

7 8 9
4 5 6

0 + -
1 2 3

=

93.54

ENT

CSE1030 9

Containers
Components are placed in containers

A JFrame is a top-level container
It exists mainly as a place for other components to
paint themselves
Cannot place a JFrame inside a JFrame

A JPanel is an intermediate container
Sole purpose is to simplify the positioning of
interactive objects, such as buttons or text fields
Other intermediate containers are scroll panes
(JScrollPane) and tabbed panes (JTabbedPane)
Can place a JPanel inside a JPanel (or inside a
JFrame, via the content pane)

CSE1030 10

Atomic Components
An atomic component is a low-level, self-
sufficient entity that interacts with the user

Examples: buttons (JButton), text fields
(JTextField), combo boxes (JComboBox)

JFrame and JPanel are also components,
however…

They can hold other components
An atomic component cannot hold other
components

CSE1030 11

Containment Hierarchy for JFC/Swing

JFrameJFrame

content panecontent pane

ContainerContainer

JPanelJPanelJPanelJPanel

JButtonJButton JLabelJLabel etc.

etc.

JPanelJPanel

JButtonJButton JTextFieldJTextField
CSE1030 12

Example Program
DemoSwing.java

CTRL-SHIFT-F1
dumps the containment
hierarchy to the console
(next slide)

JButton

JLabel

JButton

JFrame
Root pane
Layered pane
Content pane
JPanel (container)

CSE1030 13

Containment Hierarchy (abbreviated)
for DemoSwing.java

DemoSwingFrame[frame0,0,0,121x128, ...
javax.swing.JRootPane[,4,23,113x101, ...
javax.swing.JPanel[null.glassPane,0,0,113x101, ...
javax.swing.JLayeredPane[null.layeredPane,0,0,113x101, ...
javax.swing.JPanel[,0,0,113x101, ...
javax.swing.JButton[,10,10,93x27, ...
javax.swing.JLabel[,10,37,93x27, ...
javax.swing.JButton[,10,64,93x27, ...

CSE1030 14

CSE1030 – Lecture #14
Review
Containment Hierarchy
Component Layout
We’re Done!

CSE1030 15

What is Widget Layout?
Positioning widgets in their container
(typically a JPanel or a JFrame’s content
pane)

Basic idea: each widget has a size and
position

Main problem: what if a window changes
size?

CSE1030 16

Size Properties
When a component is instantiated, it takes on size
properties…

Preferred size
Minimum size
Maximum size

These properties are used to determine component
size during (a) initial layout and (b) resize operations

Size also affected by layout manager policies
(more on this later)

CSE1030 17

Widget Communication

Scenario #1: A scrollbar moves the enclosed
text also moves

Scenario #2: A window is resized
components change in position and size

How does this happen?
Pseudo-events are used for widget to widget
communication

CSE1030 18

Widget Layout Models
Absolute (a.k.a. fixed)

Manual control of component size and position

Layout Managers
BorderLayout
FlowLayout
GridLayout
BoxLayout… etc.

Struts and springs
Automatic control for component resizing

CSE1030 19

Absolute Positioning

Component position and size explicitly
specified…

X and Y screen coordinates
Width and height of component
Units: pixels (typically)

CSE1030 20

Example Program
DemoAbsolute.java

CSE1030 21

Absolute Positioning (2)
Advantages

Simple to implement
Widgets retain their position and size when
window is resized (sometimes this is desirable)

Disadvantages
Difficult to change layout (too many ‘magic
numbers’ or defined constants)
Poor response to resizing the window because…

Enlarging: too much empty space (ugly!)
Shrinking: components lost instead of wrapping

CSE1030 22

Java’s Layout Managers
BorderLayout
FlowLayout
GridLayout
BoxLayout
GridBagLayout
CardLayout
OverlayLayout
etc.

Let’s look at some
of these, but first,
an Aside about
“Struts and Springs”

CSE1030 23

(Aside:) Struts and Springs

Goals
Easy to use
Handles window resizing appropriately

Idea
Add constraints to define geometric
relationships between widgets

CSE1030 24

(Aside) Struts and Springs (2)
Place struts and springs into layout
Struts () - fixed regions (they don’t change)
Springs () - can be compressed or stretched

Advantage
When the window is resized, widget position is
determined automatically by constraint equations

Text Field Button

CSE1030 25

BorderLayout

Places components in one of five regions
North, South, East, West, Center

Support for struts and springs
Struts ()

Can specify ‘hgap’, ‘vgap’
Springs ()

Inter-component space is fixed
Components expand to fill space in region

CSE1030 26

Border Layout (2)
Components ‘expand’ (or ‘stretch’) to fill
space as follows

North

South

West EastCenter

Expand direction

CSE1030 27

Example Program

DemoBorderLayout.java

usage: java DemoBorderLayout arg1

where 'arg1' = strut size in pixels

Example (next 2 slides)

CSE1030 28

Example Program

Launch Resize

Invocation: java DemoBorderLayout 0

No struts

Variable intrinsic size

CSE1030 29

Example Program

Launch Resize

With struts : hgap = vgap = 10 pixels

Invocation: java DemoBorderLayout 10

Struts

CSE1030 30

FlowLayout
Arranges components in a group, left-to-right
Wraps components to new line if necessary

Support for struts and springs
Struts ()

Can specify ‘hgap’, ‘vgap’
Springs ()

Inter-component space is fixed
Component size is fixed

Space is added before / after / below the entire
group of components to fill available space

CSE1030 31

Example Program

DemoFlowLayout.java

usage: java DemoFlowLayout arg1 arg2

where 'arg1' = strut size in pixels

and 'arg2' is one of
c = center alignment
l = left alignment
r = right alignment

Example (next 2 slides)

CSE1030 32

Example Program (2)

Launch

Resize

Default for FlowLayout…
struts : hgap = vgap = 5,
alignment = center

Invocation: java DemoFlowLayout 5 c

Fill available space before/after/below group of
components

CSE1030 33

Example Program (3)

Launch

Resize

Invocation: java DemoFlowLayout 10 r

With struts : hgap = vgap = 10,
alignment = right

CSE1030 34

GridLayout
Arranges components in a rectangular grid
The grid contains equal-size rectangles

Support for struts and springs
Struts ()

Can specify ‘hgap’, ‘vgap’
Springs ()

Inter-component space is fixed
Components expand to fill rectangle

CSE1030 35

Example Program

DemoGridLayout.java

usage: java DemoGridLayout arg1

where 'arg1' = strut size in pixels

Example (next 2 slides)

CSE1030 36

Example Program (2)

Launch Resize

Invocation: java DemoGridLayout 0

No struts

Equal-size rectangles

CSE1030 37

Example Program (3)

Launch Resize

Invocation: java DemoGridLayout 10

With struts : hgap = vgap = 10

CSE1030 38

BoxLayout
Arranges components vertically or horizontally
Components do not wrap

Support for struts and springs
Struts ()

Can specify ‘rigid areas’
Springs ()

Can specify ‘horizontal glue’ or ‘vertical glue’
Components expand if maximum size property is
set

CSE1030 39

Example Program
DemoBoxLayout.java

usage: java DemoBoxLayout arg1 arg2

where 'arg1' is one of
c = centre alignment
l = left alignment
r = right alignment

and 'arg2' is one of
e = enable struts and springs demo
d = disable struts and springs demo

Example (next 2 slides)

CSE1030 40

Example Program (2)

Invocation: java DemoBoxLayout r d

Invocation: java DemoBoxLayout l d

Invocation: java DemoBoxLayout c d

Default is left align

CSE1030 41

Example Program (3)
Invocation: java DemoBoxLayout c e

Launch Resize Resize more

Struts (10 pixels)

Springs

Enable struts and springs demo

CSE1030 42

Default Layout Managers

JPanel = FlowLayout
JFrame’s content pane = BorderLayout

CSE1030 43

JPanels within JPanels
Can you Figure-out how to combine layout
managers to create this GUI layout?

Hello there

Clear Exit

Enter some text: Hello there

Clear Exit

Enter some text:

Upon launching After resizing

CSE1030 44

Solution
DemoLayoutExample.java

CSE1030 45

CSE1030 – Lecture #14
Review
Containment Hierarchy
Component Layout
We’re Done!

CSE1030 46

Next topic…

Arrays

