
Lecture #13

CSE1030 – Introduction to
Computer Science II

Graphical User Interface II

CSE1030 2

Goals for Today

Theoretical
Model View Controller architecture

Practical
Introduction to Games

CSE1030 3

CSE1030 – Lecture #13
Review
MVC
Game Programming
We’re Done!

CSE1030 4

Java GUI Programming Goals
The objective is to become “familiar” with the
parts of a Java GUI program

The size of the API makes learning GUI
programming difficult

There’s a whole 3rd year course just on
Java GUI programming (CSE3461)

For now,
Tinker with the Demo programs
Use the Demo programs as a basis for your
GUI programs

CSE1030 5

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class DemoSwing extends JFrame implements ActionListener
{

public static void main(String[] args)
{

DemoSwingFrame frame = new DemoSwingFrame();
frame.setTitle("Swing Demo");
frame.pack();
frame.setVisible(true);

}

private int clickCount;
private JLabel tally;
private JButton pressMeButton;
private JButton exitButton;

Important imports

Setup the Frame

setVisible()!

Define Widgets

CSE1030 6

public DemoSwing()
{

// --------------------------------------
// declare and initialize local variables
// --------------------------------------

clickCount = 0;

// -------------------------------
// create and configure components
// -------------------------------

tally = new JLabel("Click count: 0");
tally.setHorizontalAlignment(SwingConstants.CENTER);
pressMeButton = new JButton("Press me!");
exitButton = new JButton("Exit");

// -------------
// add listeners
// -------------

pressMeButton.addActionListener(this);
exitButton.addActionListener(this);
this.addWindowListener(new WindowCloser());

Setup the widgets
we declared earlier

listeners

(so we can
get input)

CSE1030 7

// ------------------
// arrange components
// ------------------

// put components in a panel

JPanel panel = new JPanel();
panel.setBorder(BorderFactory.createEmptyBorder(10,

10, 10, 10));
panel.setLayout(new GridLayout(3, 1));
panel.add(pressMeButton);
panel.add(tally);
panel.add(exitButton);

// make the panel this extended JFrame's content pane

setContentPane(panel);
}

Layout the
component in a
JPanel with a

LayoutManager

The ContentPane
is the main area
of the application

window
CSE1030 8

// -------------------------------
// implement ActionListener method
// -------------------------------

public void actionPerformed(ActionEvent ae)
{

if (ae.getSource() == pressMeButton)
{

clickCount++;
tally.setText("Click count: " + clickCount);

}
else if (ae.getSource() == exitButton)

System.exit(0);
}

private class WindowCloser extends WindowAdapter
{

public void windowClosing(WindowEvent event)
{

System.exit(0);
}

}
}

Listeners get us
our input

Sometimes we
use inner classes

CSE1030 9

CSE1030 – Lecture #13
Review
MVC
Game Programming
We’re Done!

CSE1030 10

Background
The model-view controller (MVC) paradigm was
developed at the Xerox Palo Alto Research
Center (PARC).
MVC was central to the architecture of the multi-
windowed Smalltalk environment used to create
the first graphical user interfaces.
The approach was borrowed by the developers of
the Apple Macintosh and many other imitators.
In such an interface, input is primarily via the
mouse and keyboard; output is a mix of graphics
and textual components as appropriate.
MVC is elegant and simple, but unlike the
approach of traditional application programs.

CSE1030 11

MVC Paradigm

Traditional paradigm…

Input processing output

MVC paradigm…

Controller model view

CSE1030 12

MVC Schematic

Keyboard
Mouse

Etc.
Controller

View

Model

Display

Holds
the

Data

CSE1030 13

Controller Tasks
Receive user inputs from mouse and
keyboard
Map these into commands that are
sent to the model and/or viewport to
effect changes in the view
E.g., detect that a button has been
pressed and inform the model that the
button stated has changed

CSE1030 14

Model Tasks
Store and manage data elements, such
as state information
Respond to queries about its state
Respond to instructions to change its
state
E.g., the model for a button can be
queried to determine if the button is
pressed

CSE1030 15

View tasks
Implements a visual display of the model
E.g., a button has a coloured
background, appears in a raised
perspective, and contains an icon and
text; the text is rendered in a certain font
in a certain colour

CSE1030 16

MVC Concepts – multiple views
Any number of views can subscribe
to the model

Button
model

View #1

View #2

View #3

CSE1030 17

MVC Concepts - Model Changes
What happens when the model changes?
E.g., a button is pressed (the state of the
button has changed!)
The model must notify the view
The view changes the visual presentation
of the model on the screen

CSE1030 18

Benefits of MVC Architecture
Improved maintainability

Due to modularity of software components
Promotes code reuse

Due to OO approach (e.g., subclassing,
inheritance)

Model independence
Designers can enhance and/or optimize model
without changing the view or controller

Plug-able look and feel
New L&F without changing model
Multiple views use the same data

CSE1030 19

MVC and Swing
Swing designers found it difficult to write
a generic controller that didn’t know the
specifics about the view
So, they collapsed the view and
controller into a single UI (user interface)
object known as a delegate (the UI is
delegated to this object)
This object is known as a UI delegate

CSE1030 20

MVC and Swing (2)

Keyboard
Mouse

Etc.
Controller

View

Model

Display

Swing component

UI delegate

CSE1030 21

ComponentUI Class
The delegate part of a component is derived from
an abstract class named ComponentUI
Naming convention: remove the “J” from the
component’s class name, then add “UI” to the end
(e.g., JButton ButtonUI)

ComponentUI ButtonUI BasicButtonUI

MenuButtonUI

MultiButtonUI

OrganicButtonUI

CSE1030 22

Swing Models
In Swing, many models exist as interfaces

Eg., ButtonModel, BoundedRangeModel,
ComboBoxModel, ListModel,
ListSelectionModel, TableModel, Document

The interface is implemented in model classes
Usually there is a default model class that is
automatically associated with a component
(whew!)

E.g., DefaultButtonModel implements
ButtonModel
E.g, AbstractDocument implements Document
(PlainDocument is a subclass of
AbstractDocument)

CSE1030 23

CSE1030 – Lecture #13
Review
MVC
Game Programming
We’re Done!

CSE1030 24

AlienAttack
Controllable
Missile

Randomised
UFO spaceship

Animated
Explosion

Points (Score)

CSE1030 25

Features of the Game
Three things have to happen simultaneously:

1. Moving images (Sprites!)

2. User Input controls the Missile

3. Missile and UFO spaceship collision

Animation requires that the screen be redrawn
at least 20 time a second, but faster is even
better

CSE1030 26

The Main Loop

Manage the UFO
Spaceship

Manage the Missile

Check for a Collision

Move all the Sprites

Redraw the Screen

1. Wait for random delay
2. Start new screen transit, with

random: side, height, speed
3. Need special handling of the

explosion

If the missile is moving, wait for
it to hit the top of the screen, and
then stop it

Need a way to track all of the
sprites, with their speeds and
directions

CSE1030 27

Media
This is the most important part of the game:

CSE1030 28

AlienAttack

Let’s Look at the Code…

CSE1030 29

CSE1030 – Lecture #13
Review
MVC
Game Programming
We’re Done!

CSE1030 30

Next topic…

Graphical User Interface III

