
Lecture #12

CSE1030 – Introduction to
Computer Science II

Graphical User Interfaces I

CSE1030 2

Goals for Today

Introduction to:
Graphical User Interface Programming

Three Challenges:
1. Java Swing is a HUGE API
2. Have to be very comfortable with OOP

Extending classes, implementing Interfaces
3. Event-Driven programming instead of Sequential

CSE1030 3

CSE1030 – Lecture #12

Introduction
Java GUI Programming
Sequential versus Event-Driven
We’re Done!

CSE1030 4

Let’s look at these 2 programs…

DemoLargestConsole.java

DemoLargestGUI.java

CSE1030 5

What Differences Did We See?

What Interaction technologies were used
for input and output?

Console keyboard / command-line
GUI keyboard & mouse / graphical display

Who Drove the Interaction?
Console the Program
GUI the User

CSE1030 6

Textual (Console) Interfaces
Older Interaction Style
Provides a means to express commands to a
computer directly via typing and reading text
May use function keys, single characters,
abbreviations, or whole-word commands
Primarily used today for older applications
(e.g., ftp, telnet, Unix command-line)
Can be difficult for Novices
Often preferred by Expert users

CSE1030 7

Graphical User Interfaces
Newer Style of Interaction
Usually involves a Pointing Device and
Graphical Display
Richer Output (Graphics, Sound, Video)
Several Variations

Point & Click (web pages)
Question & Answer (MS Windows “Wizards”)
Forms (Data Entry, Spread Sheets)
WIMP (Windows, Icons, Menus, Pointers)

Can be easier for Novices
May not be preferred by Experts

CSE1030 8

CSE1030 – Lecture #12

Introduction
Java GUI Programming
Sequential versus Event-Driven
We’re Done!

CSE1030 9

GUI Programming is accomplished with the
javax.swing package

Sun’s Swing toolkit is Java’s most advanced
toolkit, and largest API

Before Swing…
AWT (abstract windowing toolkit)
Most of AWT is now obsolete…
but AWT still used for a few things (drawing,
images, etc.)

Swing still uses many features of AWT

GUI Programing with Java

CSE1030 10

GUI Program Organization

How do you code a GUI program?

DemoHelloWorld.java
DemoHelloWorld2.java

DemoSwing.java

CSE1030 11

import ...

public class NameOfProgram
extends JFrame
implements ActionListener

{
public static void main(String[] args)
{

}

...

}

Identify packages containing
classes used in the program

1. Construct the GUI frame
2. Give it a title
3. Show it
4. Done!

Java Swing (GUI)
Library is HUGE.
Extend and implement!

All the work is done here

CSE1030 12

import ...

public class NameOfProgram
extends JFrame
implements ActionListener

{
public static void main(String[] args)
{

}

...

}

Our GUI program is
actually a JFrame extended
and modified to suit our
needs

CSE1030 13

JFrame
Java GUI Programs are instances of JFrame

JFrame is extended to make our own class

Interaction is received through listeners
Listeners are implemented interfaces
There are listeners for many different kinds of
input (keyboard, mouse, windows opening or
closing, and many more)

So we must be comfortable with extending
classes and implementing interfaces

CSE1030 14

JPanel
JPanels contain GUI elements

This is composition

The JPanel uses a Layout Manager to
arrange the display (to layout the GUI
components)

GUI elements are most of the things you can
see or interact with in a graphical program

JLabel, JButtons, JTextfield, images, etc.
Does not contain application-wide elements, like
JMenu, JPopup, etc.

CSE1030 15

JFrame Constructor
Must…

Create and configure the GUI components

Install (“add”) listeners
Listeners are not just installed, they must
be associated with particular GUI
components

Arrange components in panel(s)

Get the JFrame’s content pane

Add panel(s) to content pane

CSE1030 16

Also, Notice the “Inner Class”
A Java Class can define a class within a class

public class DemoSwing extends JFrame implements ActionListener
{

...

public DemoSwing() { ... }

// Note: WindowAdapter implements WindowListener
private class WindowCloser extends WindowAdapter
{

public void windowClosing(WindowEvent event)
{

System.exit(0);
}

}
}

CSE1030 17

CSE1030 – Lecture #12

Introduction
Java GUI Programming
Sequential versus Event-Driven
We’re Done!

CSE1030 18

Some Example Code
Sequential programs have linear execution

Step 1, Step 2, Step 3

Event-Driven programs are chaotic
Whatever we are asked to do next, we have to
be able to handle

DemoLargestConsole.java

DemoLargestGUI.java

CSE1030 19

Sequential Programming
In sequential programs, the program is under
control

The user is required to synchronize with the
program:

Program tells user it’s ready for more input
User enters more input and it is processed

Examples:
Command-line prompts (DOS, UNIX)
Command-line programs (ftp, telnet)

CSE1030 20

Sequential Programming (2)

Flow of a typical sequential program:

1. Prompt the user (Output)
2. Read input from the keyboard (Input)
3. Parse the input (Process...)
4. Evaluate the result
5. Generate output (Output)
6. Repeat

CSE1030 21

Sequential Programming (3)
Advantages

Architecture is sequential (one step at a
time)
Easy to model (flowcharts, state machines)
Easy to build

Limitations
Hard to implement complex interactions
Interaction must proceed according to a pre-
defined sequence

To the rescue… Event-driven programming

CSE1030 22

Event-driven Programming
Instead of a user synchronizing with the
program, the program synchronizes with,
or reacts to, the user

All communication from user to computer
occurs via events and the code that
handles the events

An event is an action that happens in the
system, such as:

A mouse button pressed or released
A key-press on the keyboard
A window is moved, resized, closed, etc.

CSE1030 23

Classes of Events
Typically two different classes of events:

User-initiated events
Events that result directly from a user action
(e.g., mouse click, move mouse, key press)

System-initiated events
Events created by the system, as it responds to
user action
(e.g., scrolling text, re-drawing a window)

Both classes of events need to be processed

User-initiated events may generate system-
generated events

CSE1030 24

DemoLargestGUI
The user requests that the program performs an action
(finds the largest value) by clicking on the “Find Largest”
button

The button functionality is provided by a JButton object,
which “fires an Action Event” when it is clicked

By registering as an ActionListener for this button, we
can intercept clicks (be informed when the user clicks
the button)

CSE1030 25

Java Events
When a user types characters or uses the
mouse, Java’s window manager sends a
notification to the program that an event has
occurred

E.g., when the user presses a key on the
keyboard, a key pressed event occurs

There are many, many kinds of events
actionevents (button clicks), key events,
mouse events, etc.
Many are of no interest
Some are of great interest

CSE1030 26

Java’s Event Class Hierarchy
EventObject

AWTEvent

ActionEvent ComponentEvent

InputEvent WindowEvent

MouseEvent KeyEvent

Note: This diagram is not
complete. It just shows only
the most common event
classes.

CSE1030 27

Let’s look at DemoKeyEvents

DemoKeyEvents.java

CSE1030 28

Processing Events
Signature for the keyPressed method is:

When our keyPressed method executes, it
receives a KeyEvent object as an argument

We use the KeyEvent object to
Determine which key was pressed, using

getKeyChar, getKeyCode, etc.

Determine the source of the event, using getSource
This is important if there is more than one component
registered to receive key events (not the case in our
example program).

public void keyPressed(KeyEvent ke)

CSE1030 29

Java Events (2)
To receive notification of events of interest, a
program must install event listener objects

It is not enough to simply know that an event has
occurred; we need to know the event source

E.g., a key was pressed, but in which of several text
fields in the GUI was the key pressed?

So, an event listener must be installed for particular
components that may generate the event

Let’s look at the code. First, the big picture…

CSE1030 30

Event Sources
Java’s event classes are all subclasses of EventObject
(see earlier slide)

EventObject includes the getSource method:

Didn’t need this in our example program, because only
one object (enterField) was registered to generate key
events

So, when the keyPressed method executes we know it
is because a key was pressed in enterField

But, let’s say we have two JTextField components:
(next slide)

public Object getSource()

CSE1030 31

Let’s look at DemoKeyEvents2

DemoKeyEvents2.java

CSE1030 32

Listeners

Java’s listener classes are interfaces

Reminder: Interfaces…
Contain only the design of a class

Do not have instance variables

Include only abstract methods

Include only public methods

Possibly: static final Data

CSE1030 33

Listeners (2)
The signature of our extended JFrame class
includes the clause implements KeyListener

This means our class must include definitions for
the methods of the KeyListener listener

Thus…

Our implementation includes the code we want
executed when a key is pressed, released, and/or

public void keyPressed(KeyEvent ke) {}
public void keyReleased(KeyEvent ke) {}
public void keyTyped(KeyEvent ke) {}

CSE1030 34

Installing Listeners
It is not enough simply to implement the methods of a
listener

The listener must also be installed (or “added”)

Furthermore, it must be installed for the component to
which the listener methods are to be associated

Thus (from our example program)
enterField.addKeyListener(this);

Component to which
the listener methods are

to be associated

An object of a class
that implements the

listener methods

CSE1030 35

Installing Listeners (2)
Signature for the addKeyListener method:

Description:
Adds the specified key listener to receive key events
from this component.

In our example, we used this as the “specified key
listener”

Indeed, the current instance of our extended JFrame
class (“this”) is a key listener because it implements the
key listener methods

Result: when a key-press event occurs on the
enterField component, the keyPressed method in
our extended JFrame class will execute!

public void addKeyListener(KeyListener)

CSE1030 36

Let’s look at DemoMouseEvents

DemoMouseEvents.java

CSE1030 37

Adapters and Inner Classes

Let’s Revisit:

DemoSwing.java

CSE1030 38

Back to the Example Program…
...
public class NameOfProgramFrame extends Jframe
implements KeyListener
{

...

private class WindowCloser extends WindowAdapter
{

public void windowClosing(WindowEvent we)
{

System.exit(0);
}

}
}

CSE1030 39

Adapter Classes
What is an adapter class?

A class provided as a convenience in the
Java API

An adapter class includes an empty
implementation of the methods in a
listener

Programmers extend the adapter class
and implement the methods of interest,
while ignoring methods of no interest

CSE1030 40

WindowAdapter

public abstract class WindowAdapter
implements WindowListener
{

void windowActivated(WindowEvent we) {}
void windowClosed(WindowEvent we) {}
void windowClosing(WindowEvent we) {}
void windowDeactivated(WindowEvent we) {}
void windowDeiconified(WindowEvent we) {}
void windowIconified(WindowEvent we) {}
void windowOpened(WindowEvent we) {}

}

CSE1030 41

Using the WindowAdapter Class
Define an inner class that extends the
WindowAdapter class

Implement the listener methods of interest
Ignore other listener methods

In the frame constructor, use the appropriate
“add” method to add an object of the
extended WindowAdapter class

In our example program…
this.addWindowListener(new WindowCloser());

CSE1030 42

Examples of Listeners and Adapters
Listeners (# methods) Adapters
KeyListener (3) KeyAdapter
WindowListener (7) WindowAdapter
MouseListener (5) MouseAdapter
MouseMotionListener (2) MouseMotionAdapter
MouseInputListener (7) MouseInputAdapter
ActionListener (1) -
ItemListener (1) -
FocusListener (2) FocusAdapter

(Note: MouseInputListener combines MouseListener and
MouseMotionListener)

CSE1030 43

Extending Adapters
vs. Implementing Listeners

Largely a matter personal choice

Our example program does both
The KeyListener methods were implemented
The WindowAdapter class was extended

Could have done the opposite, i.e.,
Extend the KeyAdapter class
Implement the WindowListener methods

Note: a Java class can implement many
listeners, but it can extend only one class

Java does not include multiple inheritance

CSE1030 44

Pros and Cons
Using adapter classes

Advantage
Only the listener methods needed are defined

Disadvantage
A bit complicated to setup
Need to define an inner class, then instantiate an object of
the inner class to pass to the appropriate “add” method

Implementing listener methods
Advantage

A class can implement many different listener interfaces
Disadvantage

Must implement all the methods defined in the listener
(even those not used)

CSE1030 45

CSE1030 – Lecture #12

Introduction
Java GUI Programming
Sequential versus Event-Driven
We’re Done!

CSE1030 46

Next topic…

Graphical User Interface II

