
Lecture #8

CSE1030 – Introduction to
Computer Science II

Aggregation & Composition II

CSE1030 2

Goals for Today
Goals

Theory:
Composition versus Aggregation

Practical:
More About Collections
Iterators
Shallow Copy versus Deep Copy

CSE1030 3

CSE1030 – Lecture #8
Review: “is-a” versus “has-a”
Theory: Composition versus Aggregation
Iteration
Shallow vs. Deep Copy
We’re Done!

CSE1030 4

Person {…}

Student {…}

Freshman {…}

GradStudent {}UnderGrad {…}

Sophomore {…}

public class Person
{

// attributes
private String Name;
private int Age;
private int Weight;

Person(String name, int age,
int weight)

{
Name = name;
Age = age;
Weight = weight;

}
...

Review “is-a” versus “has-a”

“is-a”
e.g., Class Hierarchy:

“has-a”
e.g., Person Class:

CSE1030 5

Privacy Leaks

When somebody “outside” gets a copy of
an object meant to be securely “inside”…

external

internal

Private?

CSE1030 6

Privacy Leaks

This is fixed by using the Copy Constructor to
copy sensitive objects on their way into and out-
of a class (i.e., in the accessor and mutator):

external

internal

Copy

Private!

CSE1030 7

import java.util.*;

public class PrivacyLeak
{

private HashSet<Person> students
= new HashSet<Person>();

// constructor
public PrivacyLeak()

{ students = new HashSet<Person>(); }

// add
public void add(Person p)

{ students.add(p); }

Privacy Leaks

Privacy Leak CSE1030 8

public static void main(String[] args)
{

PrivacyLeak course = new PrivacyLeak();

// create some students
Person sally = new Person("Sally Single", 32);
Person frank = new Person("Frank", 44);
Person billy = new Person("Billy", 36);

// add them to my collection
course.add(sally);
course.add(frank);
course.add(billy);

// Sally gets married and changes her name...
sally.setName("Sally Married");

System.out.println("Class List:");
for(Person p : course.students)

System.out.println(" " + p.getName());
}

}

CSE1030 9

Class List:
Billy
Frank
Sally Married

Output – Why?

sally

internal

“Sally Married”

CSE1030 10

import java.util.*;

public class PrivacyLeak
{

private HashSet<Person> students
= new HashSet<Person>();

// constructor
public PrivacyLeak()

{ students = new HashSet<Person>(); }

// add
public void add(Person p)

{ students.add(new Person(p)); }

No Privacy Leak

No Privacy Leak

CSE1030 11

Class List:
Billy
Frank
Sally Single

Output – Why?

sally

internal

“Sally Married”

“Sally Single”

CSE1030 12

CSE1030 – Lecture #8
Review: “is-a” versus “has-a”
Theory: Composition versus Aggregation
Iteration
Shallow vs. Deep Copy
We’re Done!

CSE1030 13

Big Theory Idea for Today
There is an important distinction between
code that uses an object, and the code that
is responsible for managing an object

Ideally: Responsibility implies Ownership

The terms we use for this are Aggregation
versus Composition

Aggregation = Using or Servicing an object
Composition = Ownership Responsibility

CSE1030 14

Big Theory Idea for Today
Examples:

Composition (means defining / constructing)
Person owns Name
CreditCard owns Balance (and TotalBalance)

Aggregation (means collecting)
A Person doesn’t own their Friend
CreditCard doesn’t own the Interest Rate

The idea is pure, but in the real world, the
distinction is often arbitrary, and depends
upon one’s perspective

CSE1030 15

Course and Student Example:

Student Name Changes
Who is responsible for the accuracy of the information?
Does updated information need to be propagated? (next…)

Aggregation / Composition depends upon perspective
The Students own their objects (composition)
The Professor uses those same objects (aggregation)

Course {}

Sally

Frank

Eli

Student#1

Student#2

Student#3

Student {}

CSE1030 16

Implications – General Rules
If you are responsible for something

You should own it (composition)
You should control access to it

Private + appropriate accessor / mutator
Beware of Privacy Leaks

Which basically just means the owner isn’t being
responsible for changes (use: Copy Constructor)

If you are only using something
Don’t copy it if you don’t have to (Be Efficient!)
Use it nicely (use accessors and mutators)
If you don’t copy it, you get updates “for free”

CSE1030 17

CSE1030 – Lecture #8
Review: “is-a” versus “has-a”
Theory: Composition versus Aggregation
Iteration
Shallow vs. Deep Copy
We’re Done!

CSE1030 18

Automatic Iteration: “For-Each”

for(Class Variable : Collection)
{

do.somthing();
}

“Type” or
Class Name

of the Objects
Variable Name

Collection
Variable

This form of “for-loop” is called “for-each”
It only works with objects that provide iterators
(the Java Collections do)

CSE1030 19

import java.util.*;

public class set
{

public static void main(String[] args)
{

// create a set to store my friends
HashSet<Person> friends = new HashSet<Person>();

// create some friends
Person sally = new Person("Sally", 32);
Person frank = new Person("Frank", 44);
Person billy = new Person("Billy", 36);

// add them to my collection
friends.add(sally);
friends.add(frank);
friends.add(billy);

CSE1030 20

System.out.println("I have " + friends.size()
+ " friends");

System.out.println("Here they are:");
for(Person p : friends)

System.out.println(" " + p.getName());
}

}

CSE1030 21

Output

> java set
I have 3 friends
Here they are:

Sally
Frank
Billy

CSE1030 22

How Does Iteration Work?

The class (in this case, HashSet) can produce
something called an Iterator

An Iterator provides a way to iterate (loop
through) all of the items in the set

Lets do it “manually” to see how it works…

CSE1030 23 CSE1030 24

CSE1030 25 CSE1030 26

CSE1030 27

import java.util.*;

public class set
{

public static void main(String[] args)
{

// create a set to store my friends
HashSet<Person> friends = new HashSet<Person>();

// create some friends
Person sally = new Person("Sally", 32);
Person frank = new Person("Frank", 44);
Person billy = new Person("Billy", 36);

// add them to my collection
friends.add(sally);
friends.add(frank);
friends.add(billy);

CSE1030 28

System.out.println("I have " + friends.size()
+ " friends");

System.out.println("Here they are:");
Iterator<Person> it = friends.iterator();
while(it.hasNext())

System.out.println(" " + it.next().getName());
}

}

CSE1030 29

System.out.println("I have " + friends.size()
+ " friends");

System.out.println("Here they are:");
Iterator<Person> it = friends.iterator();
while(it.hasNext())

System.out.println(" " + it.next().getName());
}

}

Comparison
System.out.println("I have " + friends.size()

+ " friends");
System.out.println("Here they are:");
for(Person p : friends)

System.out.println(" " + p.getName());
}

}

CSE1030 30

System.out.println("I have " + friends.size()
+ " friends");

System.out.println("Here they are:");
Iterator<Person> it = friends.iterator();
while(it.hasNext()) {

Person = it.next();
System.out.println(" " + p.getName());
System.out.println(" " + p.getAge());

}
}

Only Call .next() Once per Object
System.out.println("I have " + friends.size()

+ " friends");
System.out.println("Here they are:");
for(Person p : friends) {

System.out.println(" " + p.getName());
System.out.println(" " + p.getAge());

}
}

CSE1030 31

To Summarise Iterators

They provide an easy way to access out data

They are supported by all of the Java
Collections

The special “for-each” syntax makes them
incredibly easy to use

Automatically retrieves the iterator
Reduces the amount of code we have to write

CSE1030 32

CSE1030 – Lecture #8
Review: “is-a” versus “has-a”
Theory: Composition versus Aggregation
Iteration
Shallow vs. Deep Copy
We’re Done!

CSE1030 33

Shallow versus Deep Copy
If you are copying an object {course} that
has aggregated other objects {student},
should you copy the aggregated objects
{students} too?

Want to Copy
This

Sally

Frank

Eli

Student#1

Student#2

Student#3

Should we
Copy

These?

Course {}

Student {} CSE1030 34

Shallow versus Deep Copy

Course1 {}

Sally

Frank

Eli

Student#1

Student#2

Student#3

Student {}

Course2 {}

Sally

Frank

Eli

Student#1

Student#2

Student#3

Student {}

Course1 {}

Sally

Frank

Eli

Student#1

Student#2

Student#3

Student {}
Course2 {}

Student#1

Student#2

Student#3

Shallow Deep

CSE1030 35

Shallow versus Deep Copy

Course1 {}

Sally

Frank

Eli

Student#1

Student#2

Student#3

Student {}

Course2 {}

Sally

Frank

Eli

Student#1

Student#2

Student#3

Student {}

Course1 {}

Sally

Frank

Eli

Student#1

Student#2

Student#3

Student {}
Course2 {}

Student#1

Student#2

Student#3

Faster
Uses Less Memory
Aggregation
Privacy Leak?

Slower
Uses More Memory
Composition
Protects the Data?

CSE1030 36

import java.util.*;

public class Course
{

HashSet<Person> students = new HashSet<Person>();

// constructor
public Course() { students = new HashSet<Person>(); }

// copy contructor
public Course(Course course)
{

students = new HashSet<Person>();
for(Person p : course.students)

students.add(p);
}

// add
public void add(Person p) { students.add(p); }

Shallow Copy

CSE1030 37

public static void main(String[] args)
{

Course course = new Course();

// create some students
Person sally = new Person("Sally Single", 32);
Person frank = new Person("Frank", 44);
Person billy = new Person("Billy", 36);

// add them to my collection
course.add(sally);
course.add(frank);
course.add(billy);

CSE1030 38

// make a copy
Course backup = new Course(course);

// Sally gets married and changes her name...
sally.setName("Sally Married");

System.out.println("Class List:");
for(Person p : course.students)

System.out.println(" " + p.getName());

System.out.println("Backup Class List:");
for(Person p : backup.students)

System.out.println(" " + p.getName());
}

}

CSE1030 39

Output – Shallow Copy

Class List:
Billy
Sally Married
Frank

Backup Class List:
Billy
Sally Married
Frank

CSE1030 40

Class List:
Billy
Frank
Sally Married

Output – Why?

backup

“Sally Married”course

CSE1030 41

// copy contructor
public Course(Course course)
{

this();
for(Person p : course.students)

students.add(new Person (p));
}

Deep Copy

CSE1030 42

Output – Deep Copy

Class List:
Billy
Sally Married
Frank

Backup Class List:
Sally Single
Billy
Frank

CSE1030 43

Class List:
Billy
Frank
Sally Single

Output – Why?

“Sally Married”

“Sally Single”backup

course

CSE1030 44

Shallow vs. Deep Summary

The “Shallow versus Deep” issue is very similar
to a Privacy Leak and it also relates to
Aggregation / Composition

If you own the data, you want to ensure it doesn’t get
changed without you knowing about it

If you are using the data, you probably want to use the
latest (most accurate) data available

Be aware of the issues, and decide accordingly, by
following the Inherent Relationships in the data

CSE1030 45

CSE1030 – Lecture #8
Review: “is-a” versus “has-a”
Theory: Composition versus Aggregation
Iteration
Shallow vs. Deep Copy
We’re Done!

CSE1030 46

Next topic…

Inheritance I

