
Lecture #7

CSE1030 – Introduction to
Computer Science II

Aggregation & Composition I

CSE1030 2

Goals for Today
Goals

Theory:
“is-a” versus “has-a”

Practical: (Assignment #3!)
“has-a” relationships
Collections

CSE1030 3

CSE1030 – Lecture #7
Review
Theory: “is-a” versus “has-a”
Special Case 1: Has 1
Special Case 2: Has a “Known” Number
General Case: Collections
Retrieving Data from a Collection
We’re Done!

CSE1030 4

Person {…}

Teacher {…} Student {…}

Librarian {…}

Freshman {…}

GradStudent {…}UnderGrad {…}

Prof {…}

Tenured {…}

Lecturer {…}

Sophomore {…}

public class Person
{

// attributes
private String Name;
private int Age;
private int Weight;

Person(String name, int age, int weight)
{ Name = name; Age = age; Weight = weight; }

// methods
public String getName() { return Name; }
public void setName(String n) { Name = n; }

public int getAge() { return Age; }
public void setAge(int a) { Age = a; }

public void setWeight(int w) { Weight = w; }
}

Review: Two Things We’ve
Already Seen

Class Hierarchy The Person Class

CSE1030 5

CSE1030 – Lecture #7
Review
Theory: “is-a” versus “has-a”
Special Case 1: Has 1
Special Case 2: Has a “Known” Number
General Case: Collections
Retrieving Data from a Collection
We’re Done!

CSE1030 6

Big Theory Idea for Today

We have talked about the idea that we should
design our classes so that they reflect the
Inherent Relationships of the problem domain

Examples:
People: Names / Ages
Credit Cards: Card #s / Credits / Balances
Students: People / UnderGrad / Courses

What about the relationships between Objects?

CSE1030 7

Big Theory Idea for Today
Time to move towards a more formal definition
of “Inherent Relationships”

There are 2 kinds of Relationships that occur
between objects:

“has-a” Relationships
People: Names / Ages / Weights
Credit Cards: Card #s / Credits / Balances

“is-a”
Student “is-a” Person
visa “is-a” credit card

CSE1030 8

Person {…}

Student {…}

Freshman {…}

GradStudent {}UnderGrad {…}

Sophomore {…}

public class Person
{

// attributes
private String Name;
private int Age;
private int Weight;

Person(String name, int age,
int weight)

{
Name = name;
Age = age;
Weight = weight;

}
...

We have seen both kinds of
relationship before…

“is-a”
e.g., Class Hierarchy:

“has-a”
e.g., Person Class:

CSE1030 9

Implications
“is-a” relationships define the Class Hierarchy

We haven’t talked much about this yet
It’s coming up soon (next module…)

“has-a” relationships define the Data Members
(static and instance) that should be contained
within a Class or Object

We’ve been using these for a couple of weeks now,
although we haven’t been using the term “has-a”
We have a few more things to say about this…

CSE1030 10

CSE1030 – Lecture #7
Review
Theory: “is-a” versus “has-a”
Special Case 1: Has 1
Special Case 2: Has a “Known” Number
General Case: Collections
Retrieving Data from a Collection
We’re Done!

CSE1030 11

When having a single “has-a”

A person only has a single name, or single age

Consequently we reflect these “has-a”
relationships by including a single data member

Usually best to keep the functionality simple, as
we have in the examples:

Private Data
Appropriate Accessor / Mutator functions
Keep Names Meaningful

CSE1030 12

Recall The Person Class:
public class Person
{

// attributes
private String name;
private int age;

// constructor
Person(String name, int age)

{ this.name = name; this.age = age; }

// methods
public String getName() { return name; }
public void setName(String name)

{ this.name = name; }

public int getAge() { return age; }
public void setAge(int age)

{ this.age = age; }
}

Reminder for William:
Style Suggestions:

javaNamingConvention
CapitalClasses

Don’t Forget Comments!

CSE1030 13

CSE1030 – Lecture #7
Review
Theory: “is-a” versus “has-a”
Special Case 1: Has 1
Special Case 2: Has a “Known” Number
General Case: Collections
Retrieving Data from a Collection
We’re Done!

CSE1030 14

A Small Known Number of “has-a”

Have to figure-out two things:
How to store the data in the class
(private data organisation)

Arrays (don’t know about yet)
Collections (learning about in a few slides)

How to design the API to be friendly

It’s OK to generalise what we already
know…

CSE1030 15

public class BaseballFielders
{

private Person pitcher;
private Person catcher;
private Person firstBaseman;
private Person secondBaseman;
private Person thirdBaseman;
private Person shortstop;
private Person LeftFielder;
private Person centreFielder;
private Person rightFielder;

Baseball Fielders
In Baseball, when a team plays the field, they have
exactly 9 players
This is a “has-a” relationship
(teams are not players, they have players)
What would the corresponding Java Class look like?

CSE1030 16

// constructor
public BaseballFielders(

Person pitcher,
Person catcher,
Person firstBaseman,
Person secondBaseman,
Person thirdBaseman,
Person shortstop,
Person LeftFielder,
Person centreFielder,
Person rightFielder

){
this.pitcher = pitcher;
this.catcher = catcher;
this.firstBaseman = firstBaseman;
this.secondBaseman = secondBaseman;
this.thirdBaseman = thirdBaseman;
this.shortstop = shortstop;
this.LeftFielder = LeftFielder;
this.centreFielder = centreFielder;
this.rightFielder = rightFielder;

}

Reminder for William:
Layout of

Professional Code

CSE1030 17

// accessors
public Person getPitcher()

{ return new Person(pitcher); }

// ...

// mutators
public void setPitcher(Person pitcher)

{ this.pitcher = new Person(pitcher); }

// ...
}

The Accesors and Mutators for the rest of the
members of the team are omitted for brevity.

CSE1030 18

CSE1030 – Lecture #7
Review
Theory: “is-a” versus “has-a”
Special Case 1: Has 1
Special Case 2: Has a “Known” Number
General Case: Collections
Retrieving Data from a Collection
We’re Done!

CSE1030 19

What if you don’t know how many?

Java provides Collections to conveniently store
an unknown number of objects

Can store collections of any type of object

There are 3 main families (types) of collection:
Sets
Lists
Maps

CSE1030 20

Sets
Are like the mathematical notion of “set”,
or like a shopping list:

{Eggs, Milk, Bread, Chocolate, …}

No Duplicates

No notion of numerical or alphabetic “order”

CSE1030 21

import java.util.*;

public class set
{

public static void main(String[] args)
{

// create a set to store my friends
HashSet<Person> friends = new HashSet<Person>();

// create some friends
Person sally = new Person("Sally", 32);
Person frank = new Person("Frank", 44);
Person billy = new Person("Billy", 36);

// add them to my collection
friends.add(sally);
friends.add(frank);
friends.add(billy);

System.out.println("I have " + friends.size()
+ " friends");

}
}

Reminder for William:
import

CSE1030 22

Output

For more information about HashSet<>
http://docs.oracle.com/javase/7/docs/api/java/util/HashSet.html

How to get our objects back out?
We’ll cover that in a slide or two…

> java set
I have 3 friends

CSE1030 23

Lists
Are like a “To Do” list, a sequence of objects:
1. Weekly Readings
2. Go to Class
3. Work on Assignment
4. Send e-mail to Prof telling him how riveting his lectures are
5. Send e-mail to Prof telling him how riveting his lectures are
6. Submit Assignment

Can have Duplicates

Does have a notion of “order”
(not necessarily numeric or alphabetic)

CSE1030 24

import java.util.*;

public class list
{

public static void main(String[] args)
{

// list of people I need to visit
LinkedList<Person> visits = new LinkedList<Person>();

// create some people to visit
Person sally = new Person("Sally", 32);
Person frank = new Person("Frank", 44);
Person billy = new Person("Billy", 36);

// construct list of upcoming visits
visits.add(sally);
visits.add(frank);
visits.add(billy);
visits.add(frank);

System.out.println("I have planned " + visits.size()
+ " visits");

}
}

Duplicates Allowed!

CSE1030 25

Output

For more information about LinkedList<>
http://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html

> java list
I have planned 4 visits

CSE1030 26

Maps
Are like a dictionary:
mapping one object (the key)
to another (the value)

(“Hello” “Bonjour”)
(“My Name Is” “Je m’appelle”)
(“Croissant” “Croissant”)

Keys must be Unique,
Values can be Duplicates

CSE1030 27

import java.util.*;

public class map
{

public static void main(String[] args)
{

// my list of contacts
HashMap<String,Person> contacts

= new HashMap<String,Person>();

// create some people to visit
Person sally = new Person("Sally Yeh", 32);
Person frank = new Person("Frank Sinatra", 44);
Person billy = new Person("Billy Holiday", 36);

// construct list of upcoming contacts
contacts.put("Sally", sally);
contacts.put("Frank", frank);
contacts.put("Billy", billy);

System.out.println("I have " + contacts.size()
+ " contacts");

}
}

(Key, Value) Pairs

CSE1030 28

Output

For more information about HashMap<K,V>
http://docs.oracle.com/javase/7/docs/api/java/util/HashMap.html

> java map
I have 3 contacts

CSE1030 29

Final Note Regarding Collections
There are many variations of these Collections:

Set
AbstractSet, ConcurrentSkipListSet, CopyOnWriteArraySet,

EnumSet, HashSet, JobStateReasons, LinkedHashSet,
TreeSet

List
AbstractList, AbstractSequentialList, ArrayList, AttributeList,

CopyOnWriteArrayList, LinkedList, RoleList,
RoleUnresolvedList, Stack, Vector

Map
AbstractMap, Attributes, AuthProvider, ConcurrentHashMap,

ConcurrentSkipListMap, EnumMap, HashMap, Hashtable,
IdentityHashMap, LinkedHashMap, PrinterStateReasons,
Properties, Provider, RenderingHints, SimpleBindings,
TabularDataSupport, TreeMap, UIDefaults, WeakHashMap

CSE1030 30

CSE1030 – Lecture #7
Review
Theory: “is-a” versus “has-a”
Special Case 1: Has 1
Special Case 2: Has a “Known” Number
General Case: Collections
Retrieving Data from a Collection
We’re Done!

CSE1030 31

Automatic Iteration

Automatic Iteration is an easy way to get access to the
data stored in a Collection

In Java code it looks like this:
for(Class Variable : Collection)
{

do.somthing();
}

“Type” or
Class Name

of the Objects

Variable Name

Collection
Variable

CSE1030 32

import java.util.*;

public class set
{

public static void main(String[] args)
{

// create a set to store my friends
HashSet<Person> friends = new HashSet<Person>();

...

// add them to my collection
friends.add(sally);
friends.add(frank);
friends.add(billy);

System.out.println("I have " + friends.size()
+ " friends");

System.out.println("Here they are:");
for(Person p : friends)

System.out.println(" " + p.getName());
}

}

CSE1030 33

Output

> java set
I have 3 friends
Here they are:

Sally
Frank
Billy

CSE1030 34

import java.util.*;

public class list
{

public static void main(String[] args)
{

// list of people I need to visit
LinkedList<Person> visits = new LinkedList<Person>();

...

// construct list of upcoming visits
visits.add(sally);
visits.add(frank);
visits.add(billy);
visits.add(frank);

System.out.println("I have planned " + visits.size()
System.out.println("Here they are:");
for(Person p : visits)

System.out.println(" " + p.getName());
+ " visits");

}
}

CSE1030 35

Output

> java list
I have planned 4 visits
Here they are:

Sally
Frank
Billy
Frank

CSE1030 36

Retrieving Data from a Map

Maps aren’t really for collecting or listing objects

They are about using one object to find another
– like a Dictionary

So instead of iterating, we’ll do a “lookup”
example instead…

CSE1030 37

import java.util.*;

public class map
{

public static void main(String[] args)
{

// my list of contacts
HashMap<String,Person> contacts

= new HashMap<String,Person>();

// create some people to visit
Person sally = new Person("Sally Yeh", 32);
Person frank = new Person("Frank Sinatra", 44);
Person billy = new Person("Billy Holiday", 36);

// construct list of upcoming contacts
contacts.put("Sally", sally);
contacts.put("Frank", frank);
contacts.put("Billy", billy);

Keys Values
CSE1030 38

System.out.println("I have " + contacts.size()
+ " contacts");

Person p = contacts.get("Frank");
if(p != null)

System.out.println("I found " + p.getName());
}

}

The Map’s get() function searches the map
for the key that matches according to the
equals() method defined for the key’s class.

The appropriate value object is returned.

HashCode() values are used to make it fast.

CSE1030 39

Output:

> java map
I have 3 contacts
I found Frank Sinatra

CSE1030 40

CSE1030 – Lecture #7
Review
Theory: “is-a” versus “has-a”
Special Case 1: Has 1
Special Case 2: Has a “Known” Number
General Case: Collections
Retrieving Data from a Collection
We’re Done!

CSE1030 41

Next topic…

Aggregation and Composition II

