CSE1030 - Introduction to
Computer Science 11

Lecture #7
Aggregation & Composition |

Goals for Today

= Goals
= Theory:

= “is-a” versus “has-a”

= Practical: (Assignment #3!)

= “has-a” relationships

= Collections

CSE1030 2

CSE1030 — Lecture #7

-] Review

= Theory: “is-a” versus “has-a”
= Special Case 1. Has 1

>

= Special Case 2: Has a “Known” Number

= General Case: Collections
= Retrieving Data from a Collection
= We're Donel!

CSE1030 3

Review: Two Things We’ve
Already Seen

= Class Hierarchy

Teacher {...}

= The Person Class

public class Person

* veight)
Age = age; Weight = weight; }
public String getName() { return Name; }
public void  setName(String n) { Name = n;  }

ubli getAge() { return Age; }
public void setAge(int a) { Age = a;  }

public void setiieight(int w) { Weight = w; }

CSE1030 4




CSE1030 — Lecture #7

= Review

« Theory: “is-a” versus “has-a” >
= Special Case 1. Has 1

= Special Case 2: Has a “Known” Number

= General Case: Collections

= Retrieving Data from a Collection

= We're Done!

CSE1030 5

Big Theory Idea for Today

= We have talked about the idea that we should
design our classes so that they reflect the
Inherent Relationships of the problem domain

= Examples:
= People: Names / Ages
= Credit Cards: Card #s / Credits / Balances
= Students: People / UnderGrad / Courses

= What about the relationships between Objects?

CSE1030 6

Big Theory Idea for Today

= Time to move towards a more formal definition
of “Inherent Relationships”

= There are 2 kinds of Relationships that occur
between objects:

= “has-a” Relationships
= People: Names / Ages / Weights
= Credit Cards: Card #s / Credits / Balances

= “is-a”
= Student “is-a” Person
= visa “is-a” credit card
CSE1030 7

We have seen both kinds of
relationship before...

“y

= “is-a = “has-a”
= e.g., Class Hierarchy: = e.g., Person Class:

public class Person
{

// attributes

private String Name;
private int Age;
private int Weight;

Person(String name, int age,
int weight)
{
Name = name;
Age = age;
Weight = weight;

3

CSE1030 8




Implications

= “is-a” relationships define the Class Hierarchy
= We haven't talked much about this yet
= |t's coming up soon (next module...)

= “has-a” relationships define the Data Members
(static and instance) that should be contained
within a Class or Object

= We've been using these for a couple of weeks now,
although we haven'’t been using the term “has-a”

= We have a few more things to say about this...

CSE1030 9

CSE1030 — Lecture #7

= Review
= Theory: “is-a” versus “has-a”
= Special Case 1: Has 1 >

= Special Case 2: Has a “Known” Number
= General Case: Collections

= Retrieving Data from a Collection

= We’re Done!

CSE1030 10

When having a single “has-a”

= A person only has a single name, or single age

= Consequently we reflect these “has-a”
relationships by including a single data member

= Usually best to keep the functionality simple, as
we have in the examples:
= Private Data
= Appropriate Accessor / Mutator functions
= Keep Names Meaningful

CSE1030 11

Recall The Person Class:

public class Person Reminder for William:

{ Style Suggestions:
// attributes javaNamingConvention
private String name; CapitalClasses
private int age; Don't Forget Comments!

// constructor
Person(String name, int age)
{ this.name = name; this.age = age; }

// methods
public String getName() { return name; }
public void setName(String name)

{ this.name = name; }

public int getAge() { return age; }

public void setAge(int age)
{ this.age = age; }

CSE1030 12




CSE1030 — Lecture #7

= Review

= Theory: “is-a” versus “has-a”

= Special Case 1: Has 1

= Special Case 2: Has a “Known” Number >

= General Case: Collections
= Retrieving Data from a Collection
= We're Donel!

CSE1030 13

A Small Known Number of “has-a”

= Have to figure-out two things:

= How to store the data in the class
(private data organisation)
= Arrays (don't know about yet)
= Collections (learning about in a few slides)

= How to design the API to be friendly

= |t's OK to generalise what we already
know...

CSE1030 14

Baseball Fielders

= In Baseball, when a team plays the field, they have
exactly 9 players

= This is a “has-a” relationship
(teams are not players, they have players)

= What would the corresponding Java Class look like?

public class BaseballFielders

{
private Person pitcher;
private Person catcher;
private Person firstBaseman;
private Person secondBaseman;
private Person thirdBaseman;
private Person shortstop;
private Person LeftFielder;
private Person centreFielder;
private Person rightFielder;

CSE1030 15

// constructor

public Base?allFlelders( Reminder for William:
Person pitcher, Layout of
Person catcher, Professional Code
Person firstBaseman,
Person secondBaseman,
Person thirdBaseman,
Person shortstop,
Person LeftFielder,
Person centreFielder,
Person rightFielder

X
this.pitcher = pitcher;
this.catcher = catcher;
this.firstBaseman = firstBaseman;
this.secondBaseman = secondBaseman;
this.thirdBaseman = thirdBaseman;
this.shortstop = shortstop;
this.LeftFielder = LeftFielder;
this.centreFielder = centreFielder;
this.rightFielder = rightFielder;

3

CSE1030 16




// accessors
public Person getPitcher()
{ return new Person(pitcher); }

/7 ...

// mutators
public void setPitcher(Person pitcher)
{ this.pitcher = new Person(pitcher); }

/7 ...

The Accesors and Mutators for the rest of the
members of the team are omitted for brevity.
CSE1030 17

CSE1030 — Lecture #7

= Review
= Theory: “is-a” versus “has-a”
= Special Case 1: Has 1

= Special Case 2: Has a “Known” Number

General Case: Collections

>

= Retrieving Data from a Collection
= We’re Done!

CSE1030 18

What if you don’t know how many?

= Java provides Collections to conveniently store
an unknown number of objects

= Can store collections of any type of object

= There are 3 main families (types) of collection:
= Sets
= Lists
= Maps

CSE1030 19

Sets

= Are like the mathematical notion of “set”,
or like a shopping list:

= {Eggs, Milk, Bread, Chocolate, ...}

= No Duplicates

= No notion of numerical or alphabetic “order”

CSE1030 20




import java.util.*; Reminder for William:
import

public class set

public static void main(String[] args)

{
// create a set to store my friends
HashSet<Person> friends = new HashSet<Person>();
// create some friends
Person sally = new Person(*Sally", 32);
Person frank = new Person(Frank™, 44);
Person billy = new Person("Billy", 36);
// add them to my collection
friends.add(sally);
friends.add(frank);
friends.add(billy);
System.out.printIn(’l have " + friends.size()
+ " friends™);
3
¥ CSE1030 21

Output

> java set
1 have 3 friends

= For more information about HashSet<>
http://docs.oracle.com/javase/7/docs/api/java/util/HashSet.html

= How to get our objects back out?
We'll cover that in a slide or two...

CSE1030 22

Lists

= Are like a “To Do” list, a sequence of objects:

. Weekly Readings

. Go to Class

. Work on Assignment

. Send e-mail to Prof telling him how riveting his lectures are
. Send e-mail to Prof telling him how riveting his lectures are
. Submit Assignment

o U, WN B

= Can have Duplicates

= Does have a notion of “order”
(not necessarily numeric or alphabetic)

CSE1030 23

import java.util.*;
public class list

public static void main(String[] args)
{
// list of people | need to visit
LinkedList<Person> visits = new LinkedList<Person>();

// create some people to visit

Person sally = new Person(*'Sally", 32);
Person frank = new Person(*‘Frank™, 44);
Person billy = new Person(Billy", 36);

// construct list of upcoming visits
visits.add(sally);

v?sits.add(fl_’ank)z Duplicates Allowed!
visits.add(billy);
visits.add(frank);

System.out.printIn('l have planned " + visits.size()
+ " visits"™);

CSE1030 24
b5




Output

> java list
1 have planned 4 visits

= For more information about LinkedList<>
http://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html

CSE1030 25

Maps

= Are like a dictionary:
mapping one object (the key)
to another (the value)

= (“Hello” - “Bonjour”)
= (“My Name Is” > “Je m'appelle”)
= (“Croissant” - “Croissant”)

= Keys must be Unique,
Values can be Duplicates

CSE1030 26

import java.util.*;
P J (Key, Value) Pairs

public class map

public static void main(String[] args)
{
// my list of contacts
HashMap<String,Person> contacts
= new HashMap<String,Person>();

// create some people to visit

Person sally = new Person(Sally Yeh", 32);
Person frank = new Person(*'Frank Sinatra", 44);
Person billy = new Person("'Billy Holiday", 36);
// construct list of upcoming contacts
contacts.put(“Sally”, sally);
contacts.put(“Frank”, frank);
contacts.put("Billy”, billy);

System.out.printIn(*'l have " + contacts.size()
+ " contacts');

CSE1030 27
b5

Output

> java map
1 have 3 contacts

= For more information about HashMap<K,V>
http://docs.oracle.com/javase/7/docs/api/java/util/HashMap.html

CSE1030 28




Final Note Regarding Collections

= There are many variations of these Collections:

= Set

= AbstractSet, ConcurrentSkipListSet, CopyOnWriteArraySet,
EnumSet, HashSet, JobStateReasons, LinkedHashSet,
TreeSet

= List
= AbstractList, AbstractSequentialList, ArrayList, AttributeList,
CopyOnWriteArrayList, LinkedList, RoleList,
RoleUnresolvedList, Stack, Vector

= Map
= AbstractMap, Attributes, AuthProvider, ConcurrentHashMap,
ConcurrentSkipListMap, EnumMap, HashMap, Hashtable,
IdentityHashMap, LinkedHashMap, PrinterStateReasons,
Properties, Provider, RenderingHints, SimpleBindings,
TabularDataSupport, TreeMap, UlDefaults, WeakHashMap

CSE1030 29

CSE1030 — Lecture #7

= Review

= Theory: “is-a” versus “has-a”

= Special Case 1: Has 1

= Special Case 2: Has a “Known” Number

= General Case: Collections

Retrieving Data from a Collection >
= We’re Done!

CSE1030 30

Automatic Iteration

= Automatic lteration is an easy way to get access to the
data stored in a Collection

= |n Java code it looks like this:
= for(Class Variable : Collection)

{
do.sdmthingQ); Collection
} Variable
“Type” or
Class Name

of the Objects

CSE1030 31

import java.util.*;
public class set

public static void main(String[] args)

{
// create a set to store my friends
HashSet<Person> friends = new HashSet<Person>();

// add them to my collection
friends.add(sally);
friends.add(frank);
friends.add(billy);

System.out.printIn(’l have " + friends.size()
+ " friends™);
System.out.printIn("'Here they are:");
for(Person p : friends)
System.out.printin(*” " + p.getName());

CSE1030 32




import java.util.*;

OUtpUt public class list
{
public static void main(String[] args)
{
// list of people | need to visit
> java set LinkedList<Person> visits = new LinkedList<Person>();

I have 3 friends
Here they are:
Sal |y // construct list of upcoming visits
visits.add(sally);
Frank visits_add(frank)
Billy visits.add(billy);
visits.add(frank);

System.out.printIn(’'l have planned " + visits.size()
System.out.printIn('Here they are:™);
for(Person p : visits)
System.out.printin(” " + p.getName());
+ " visits");

CSE1030 33 b CSE1030 34

Output Retrieving Data from a Map

> java list = Maps aren't really for collecting or listing objects
1 have planned 4 visits

H th : . . .
ere Taey are = They are about using one object to find another

Sall . o

,:ranﬁ — like a Dictionary

Billy

Frank = So instead of iterating, we'll do a “lookup”

example instead...

CSE1030 35 CSE1030 36




import java.util.*;
public class map

public static void main(String[] args)
{
// my list of contacts
HashMap<String,Person> contacts
= new HashMap<String,Person>();

// create some people to visit

Person sally = new Person("Sally Yeh", 32);
Person frank = new Person(‘'Frank Sinatra", 44);
Person billy = new Person("Billy Holiday", 36);

// construct list of upcoming contacts
contacts.put(“Sally”, sally);
contacts.put(“Frank™, frank);
contacts.put("Billy"”, billy);

cse100 &7

System.out.printIn(’'l have " + contacts.size()
+ ' contacts");

Person p = contacts.get(*'Frank');
if(p '= null)
System.out.printin('l found " + p.getName());

= The Map’s get() function searches the map
for the key that matches according to the
equals() method defined for the key’s class.

= The appropriate value object is returned.

= HashCode() values are used to make it fast.
CSE1030 38

Output:

> java map
1 have 3 contacts
1 found Frank Sinatra

CSE1030 39

CSE1030 — Lecture #7

= Review

= Theory: “is-a” versus “has-a”

= Special Case 1: Has 1

= Special Case 2: Has a “Known” Number
General Case: Collections

Retrieving Data from a Collection >

We’re Done!

CSE1030 40




Next topic...

Aggregation and Composition 11

CSE1030 41




