CSE1030 — Introduction to
Computer Science 11

Lecture #6

Mixing Static and
Non-Static Features

Goals for Today

= Goals:

= Understanding static versus instance
(non-static) data and code

= Practical: (Assignment #3!)

= You will need to use both static and
non-static data and code for the assignment

CSE1030 2

CSE1030 — Lecture #6

Review

= Static Data versus Instance Data
= Java Notation

= Static Utility Class Revisited

= Variable Hiding & Shadowing

= this

= We’re Done!

CSE1030 3

Important Concepts from Past Lectures

= In Java, Everything is a Class

= Classes Define Objects
= EEPE

= An Object Variable is

A Name,

An Arrow (pointer) to memory, and,
A Block of Memory

Person {“William", 36, 120}

= Static Utility Classes have no Objects

CSE1030 4

CSE1030 — Lecture #6

Review

] Static Data versus Instance Data

Java Notation

Static Utility Class Revisited
Variable Hiding & Shadowing
this

We’'re Done!

CSE1030 5

Recall the CreditCard Class (next 4)

public class CreditCard
{
// instance variables/attributes/fields
private String Name;
private String Number;
private double Balance;
private double Limit;

// constructor
public CreditCard(String number, String name, double limit)
{

// accessors

public String getName() { return Name;
public String getNumber() { return Number;
public double getBalance() { return Balance;
public double getLimit() { return Limit;

// mutator
public boolean setLimit(double limit)

{
if(limit > 0)
{

Limit = limit;
return true;
}
else
return false;

e

CSE1030 7

Name = name;
Number = number;
Balance = 0;
Limit = limit;
3
CSE1030 6
// charge the credit card
public boolean charge(double amount)
{
if(amount < 0)
return false;
if(Balance + amount > Limit)
{
return false;
3
else
Balance += amount;
return true;
3
3
CSE1030 8

// credit the credit card
public boolean credit(double amount)

{
if(amount < 0)
return false;

Balance -= amount;
return true;

}
3

CSE1030 9

Problem? We Want the Total Balance

public class client
{
public static void main(String[] args)
{
// first we create some credit-cards
CreditCard visa = new CreditCard(
""1234 5678 9012 3456", "William'™, 20000);
CreditCard mc = new CreditCard(
5678 9012 3456 7890", "William'™, 10000);

// transactions

visa.charge(100);

visa.credit(75); // $25 owing
mc.charge(250) ;

mc.credit(225); // another $25 owing

// what"s the grand total?
System.out.printIn("Total Owing: *
+ (visa.getBalance() + mc.getBalance()));

¥ CSE1030 10

The Big Picture

[visaH CC{Name: “William”, Balance:$25}]

[mc -]—)[CC{Name: “William”, Balance:$25}]

= Right now, there are two separate objects with
no direct connection between them. So API
user:
= Must keep track of the cards
= Must know details of the cards

CSE1030 11

Possible Problems?

[visa H CC{Name: “William”, Balance:$25}]

[mc H CC{Name: “William”, Balance:$25}]

= What if we've forgotten a card?
= or haven't been told about it?
= or are being defrauded?

CSE1030 12

Another Problem?

[mc H CC{lInterest:25%}]

= Or, what if the question is to calculate the
monthly interest?

= We would need the client code to know details of the
card’s interest calculations, that really should be
contained within the CreditCard class implementation

CSE1030 13

The Solution

[visa4—>[CC{Name: “William”, Balance:$25}]

[{Total Balance: $50}]

[mc 4—)[CC{Name: “William”, Balance:$25}]

= We need a single place to store
information common to both objects
= Easily Accessible
= but still Safe from the Outside World

CSE1030 14

Static versus Instance Data

[visaH CC{Name: “William”, Balance:$25}]}Instance

[{Total Balance: $50}]} Static

[mc H CC{Name: “William”, Balance:$25}]} Instance

= Instance is the data and code in an object
= Static is data and code common to all objects

CSE1030 15

How does it look in the Code?

public class CreditCard

{

// instance variables/attributes/fields
private String Name;

private String Number;

private double Balance;

private double Limit;

// constructor
public CreditCard(String number, String name, double limit)

{
Name = name;
Number = number;
Balance = 0;
Limit = limit;
3

CSE1030 16

// charge the credit card
public boolean charge(double amount)

{
if(amount < 0)
return false;
if(Balance + amount > Limit)
{
return false;
3
else
{
Balance += amount;
return true;
¥
}

CSE1030 17

// credit the credit card
public boolean credit(double amount)

if(amount < 0)
return false;

Balance -= amount;

return true;

}

CSE1030 18

Client Example: Secret Card (1/4)

public class client
public static void main(String[] args)

// first we create some credit-cards
CreditCard visa = new CreditCard(

""1234 5678 9012 3456, "William'™, 20000);
CreditCard mc = new CreditCard(

""5678 9012 3456 7890, "William™, 10000);

CSE1030 19

Client Example: Secret Card (2/4)

// transactions

visa.charge(100);

visa.credit(75); // $25 owing
mc.charge(250);

mc.credit(225); // another $25 owing

// do something else...
somethingelse.doit();

// what"s the grand total?

System.out.printIn(*Total Owing: “
+ CreditCard.getTotalBalance());

CSE1030 20

Client Example: Secret Card (3/4)

public class somethingelse

{

static public void doit()

CreditCard AmEx = new CreditCard(
"9012 3456 7890 1234, "William™, 10000);
AmEx.charge(100) ;
3
}

CSE1030 21

Client Example: Secret Card (4/4)

= Qutput Without Static Data (old way) is
wrong:
Total Owing: 50.0.

= Qutput With Static Data (old way) is

correct:
Total Owing: 150.0

CSE1030 22

Review: Regular Classes:

= Regular Classes have:
= Instance Data (in the Objects)
= |Instance Code (does things with Objects)
= Static Data (Shared by All Objects)
= Static Code (Only does things with static data)

[pl 4—)[{Name: “Some Data”} J}Instance

Class [{Static Data: “Some More Data”} }} Static

[p2 H {Name: “Some Data”}]} Instance

CSE1030 23

Inherent Relationships:
Static versus Non-Static Data

= Static Data is Best for

= Summary Statistics
= Counting, Serial Numbers, Profiling (Frequency, Time)
= Class-wide finals (Constants)

= Static Code is Best for

= Static Functions
(Little Utilities that don’t need an Object)

= main()
= Why?
= Pertain to a Class, Not Tied to an Object

CSE1030 24

CSE1030 — Lecture #6

= Review
= Static Data versus Instance Data >

Java Notation

= Static Utility Class Revisited
= Variable Hiding & Shadowing
= this

= We’re Done!

CSE1030 25

Accessing Instance versus Static Data

= |nstance Data and Code require an object! No
object? No way to access them. Need the Name.

[visa H {Name: “William”, ...}]

= Static Data and Code do not require an object!
Can be accessed from the Class Name:

Factor [Factor{smallestFactor()}]

CSE1030 26

Java API Notation (Outside View)

= |nstance Data and Code are accessed through
an object variable:

[visa H {Name: “William”, ...}]

visa.interestRate
visa.credit()

= Static Data and Code can be accessed through
an object or directly from the class:

Factor [Factor{smallestFactor()}]

visa.TotalBalance
Factor.smallestFactor(int C)

CSE1030 27

Java Notation (Inside View)

= Inside the class, instance and static data can be
access directly — there is no required notational
distinction:

= |nstance Data and Code:

[visa H {Name: “William”, ...}]

interestRate
credit()

= Static Data and Code:

Factor [Factor{smallestFactor()}]

TotalBalance
smallestFactor(int C)

CSE1030 28

Initialisation

= |nitialise statics when they are defined
(because the constructor is called once for each
object created)

private static int Number = 42;

= Initialise instance variables when the object is
constructed (i.e., in the Constructor)

class example {
private int Number;

example() { Number = 42; }
}

CSE1030 29

Initialising Finals

= final denotes a constant within a Class
or within an Instance (Object)

= Why?
= Some constants pertain to the whole Class,
whereas other only to an object

= Example...

CSE1030 30

class Number
final int InstanceNumber;
static final int ClassNumber = 101;
public Number(int n) { InstanceNumber = n; }
public static void main(String[] args)
¢ // define some numbers:
Number n7 = new Number(7);

Number n42 = new Number(42);

System.out.printIn('n7 " + n7.InstanceNumber);

System.out.printIn(*'n42 = " + n42.InstanceNumber);
System.out.printIn(**ClassNumber = ** + ClassNumber);
//
//
}
¥
CSE1030 31

Output

> java Number

n7 =17

n42 = 42
ClassNumber = 101

= Summary: Both Instances (Objects) and the
entire Class can have constants.

CSE1030 32

The Implicit Parameter / Argument

= Think about these two lines of code:

visa.credit(10)
mc.credit(10)

= They both call this function:

// credit the credit card
public boolean credit(double amount)

{
if(amount < 0)
return false;

Balance -= amount;
TotalBalance -= amount;

return true;

}

CSE1030 33

How does Java know which Object?

{ visaq—){ CC{Balance:$25} J ?

Implicit Parameter / Argument

= The idea is that the object by which an
instance function is called is an Implicit
Parameter, whereas our regular
parameters are Explicit:

visa.credit(10)

/ \

Implicit Explicit
Parameter Parameter

CSE1030 35

[mc .}—)[CC{Balance:$75}]
)) = Incredit(),
// credit the credit card . i
public boolean credit(double amount) we Just write
{ « "o
if(amount < 0) _Bal'_ar?ce ! Java
return false; implicitly figures-
Balance -= amount; OUE which ObJeCt
TotalBalance -= amount; (Vlsa or mc) we
return true; are using
3
CSE1030 34
You can Imagine the Code
Automatically Becomes:
visa.credit(10) mc.credit(10)
// credit the credit card // credit the credit card
public boolean public boolean
credit(double amount) credit(double amount)
{ {
if(amount < 0) if(amount < 0)
return false; return false;
visa.Balance|-= amount; mc.Balance |-= amount;
TotalBalance -= amount; TotalBalance -= amount;
return true; return true;
} 3

CSE1030 36

Nomenclature:

= |nstance = “in an Object”
= Has an Implicit Parameter / Argument
= Instance Data = Data in an Object

= Instance Code = Code that does things with an Object:
“needs an object”

= Static = “Not in an Object”
= Does Not have an Implicit Parameter / Argument
= Static Data = Data in the Class (not an object), where
the same copy of the data is accessible by all Code

= Static Code = Code that doesn’t use an implicit
parameter to access any Objects

class Number Instance
{

R R (Implicit Parameter)
final int InstanceNumber;

static final int ClassNumber = 101; /

public static void main(String[] args)

No Implicit

/ Parameters

// define some numbers:

System.out.printIn(’'n7
System.out._printin(''n42
System.out._printin(*’ClassNum

}

¥

CSE1030 38

= Example:
CSE1030 37
CSE1030 — Lecture #6
= Review
= Static Data versus Instance Data
= Java Notation
-] Static Utility Class Revisited >
= Variable Hiding & Shadowing
= this
= We’'re Donel!
CSE1030 39

Regular Classes Look Like This:

= Classes have:
= |Instance Data (In the Objects)
= |Instance Code (Does things with Objects)
= Static Data (Shared by All Objects)
= Static Code (Only does things with static data)

[pl H {Name: “Some Data”}]}Instance

Class [{Static Data: “Some More Data”}]} Static

[p2 H {Name: “Some Data”}]} Instance

CSE1030 40

Static Utility Classes Revisited

= Utility Classes have:
= Private Constructors
= No Objects
= Only Static Data and Code

— N —
pl £ B ~ Instance
e ———

Class [{Static Data: “Some More Data”}]} Static

e

p2 o> INammeome | - nstance

CSE1030 41

Static Utility Classes Revisited

= Utility Classes have:
= Private Constructors
= No Objects
= Only Static Data
= Only Static Code

Class [{Static Data: “Some More Data™} J} Static

CSE1030 42

Java Notation for Utility Classes

= Because Utility Classes have No Objects,
we have to access them through their
class name

Factor.smallestFactor(int C)

= Which “looks” like this:

Factor [Factor{smallestFactor()} }

CSE1030 43

CSE1030 — Lecture #6

= Review

= Static Data versus Instance Data

= Java Notation

= Static Utility Class Revisited

Variable Hiding & Shadowing >
= this

= We're Done!

CSE1030 44

Variable Hiding / Shadowing

= You can define a “Local Variable” or
parameter to have the same name as a
Class Data Member

= Why?
= |t's confusing, so it's a bad programming practice

= Example...

CSE1030 45

public class Hidden Hidden Variable

{

static int Variable = 10;
public static void methodl()

Variable = 100;
System.out.printIn(’in 1: " + Variable);
¥

R R R Shadow Variables
public static void method2()
{

int Variable = 200;
System.out.printIn(in 2: " + Variable);

3
public static void method3(int Variable)

Variable = 300;
System.out.printIn(in 3: " + Variable);

public static void method4(int Variable)

Variable = Variable;
System.out.printIn(’in 4: " + Variable);
¥

public static void method5(int Variable)
Hidden.Variable = Variable;

System.out.printIn(*in 5: " + Variable);
}

CSE1030 47

3
CSE1030 46
public static void main(String[] args)
{
method1();
System.out.printin(main: " + Variable);
method2();
System.out.printin(“main: " + Variable);
method3(1000) ;
System.out.printIn(main: " + Variable);
method4(2000) ;
System.out.printIn(main: " + Variable);
method5(3000) ;
System.out.printin(main: " + Variable);
3
3
CSE1030 48

Output

in 1: 100
main: 100
in 2: 200
main: 100
in 3: 300
main: 100
in 4: 2000
main: 100
in 5: 3000
main: 3000

= Hidden variables are neat, but confusing,

and can lead to hard-to-find bugs

CSE1030 49

CSE1030 — Lecture #6

= Review

= Static Data versus Instance Data
= Java Notation

= Static Utility Class Revisited

= Variable Hiding & Shadowing

this

= We're Done!

CSE1030 50

this

= |n instance code, the this variable is an

alias for the name of our object

[visa H {Name: “William”, ...}

credit()
{

}

this=visa
(But only inside this
instance function)

CSE1030 51

Why do we need this?

= Since we can easily directly refer to:
= |nstance Data (Data inside Objects)
= Static Data (Data in the Class)
why do we need this?

= this allows us to explicitly refer to
Instance Data
= Sometimes good for clarity
= Solves Variable Hiding Problems
= Solves Inheritance Problems

CSE1030 52

public class Hidden This timeit’s an
{ / Instance Variable

int Variable = 10;

public void methodl1()

Variable = 100;
System.out.printIn("in 1: " + Variable);

}
public void method2()
{
int Variable = 200;
System.out.printIn(in 2: " + Variable);
}

public void method3(int Variable)

Variable = 300;
System.out._printIn(in 3: " + Variable);

¥

CSE1030 53

public void method4(int Variable)

Variable = Variable;
System.out.printin("in 4: " + Variable);

}
public void method5(int Variable)
{
System.out.printIn(in 5: " + Variable);
}

CSE1030 54

public static void main(String[] args)

{
Hidden h = new Hidden(Q);
h_method1();
System.out.printIn(main: " + h_Variable);
h.method2();
System.out.printIn(main: " + h._Variable);
h.method3(1000);
System.out.printin("main: " + h.Variable);
h_method4(2000) ;
System.out.printin(main: " + h.Variable);
h_method5(3000);
System.out.printIn(main: " + h_Variable);
}

CSE1030 55

= Same output as before, same hiding of the
variable Variable, even though it's an
Instance variable this time.

CSE1030 56

this and Cool Variable Hiding?

public class Cool

{
String Name;
int Age;
public Cool(String Name, int Age)
{
this.Name = Name;
this.Age = Age;
3

public void setName(String Name)

this.Name = Name;

¥

// rest of class

CSE1030 57

Annoying Overuse of this

public class NotCool

{
String Name;
static int CountNameChanges = 0;

public NotCool(String Name, int Age)
{

this.Name = Name;

NotCool . CountNameChanges++;

}
public void setName(String Name)

this.Name = Name;
NotCool . CountNameChanges++;

3

// ... rest of class

CSE1030 58

| Apologise if you like to code that way

= Some textbooks and profs recommend the
explicit approach (this.var, class.var, for all
references to Instance or Class variables)

= It makes explicitly clear which variables are
instance or static

= Although it is easier to accomplish this by variable
name prefixing:
= “Name” vs. “name”, or “iIName” vs. “sName”

= In the end, it takes a lot more typing to merely
accomplish what Java does by default
= (But it's great if you're getting paid by the character!)

CSE1030 59

CSE1030 — Lecture #6

= Review

= Static Data versus Instance Data
= Java Notation

= Static Utility Class Revisited

= Variable Hiding & Shadowing

= this

We’re Done!

>

CSE1030 60

Next topic...

Aggregation and Composition |

CSE1030 61

