CSE1030 — Introduction to
Computer Science 11

Lecture #6

Mixing Static and
Non-Static Features

Goals for Today

= Goals:

= Understanding static versus instance
(non-static) data and code

= Practical: (Assignment #3!)

= You will need to use both static and
non-static data and code for the assignment

CSE1030 2

CSE1030 — Lecture #6

Review

= Static Data versus Instance Data
= Java Notation

= Static Utility Class Revisited

= Variable Hiding & Shadowing

= this

= We’re Done!
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Important Concepts from Past Lectures

= In Java, Everything is a Class

= Classes Define Objects
= EEPE

= An Object Variable is

A Name,

An Arrow (pointer) to memory, and,
A Block of Memory

Person {“William", 36, 120}

= Static Utility Classes have no Objects
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CSE1030 — Lecture #6

Review

] Static Data versus Instance Data

Java Notation

Static Utility Class Revisited
Variable Hiding & Shadowing
this

We’'re Done!
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Recall the CreditCard Class (next 4)

public class CreditCard
{
// instance variables/attributes/fields
private String Name;
private String Number;
private double Balance;
private double Limit;

// constructor
public CreditCard(String number, String name, double limit)
{

// accessors

public String getName() { return Name;
public String getNumber() { return Number;
public double getBalance() { return Balance;
public double getLimit() { return Limit;

// mutator
public boolean setLimit(double limit)

{
if(limit > 0)
{

Limit = limit;
return true;
}
else
return false;

e
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Name = name;
Number = number;
Balance = 0;
Limit = limit;
3
CSE1030 6
// charge the credit card
public boolean charge(double amount)
{
if(amount < 0)
return false;
if(Balance + amount > Limit)
{
return false;
3
else
Balance += amount;
return true;
3
3
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// credit the credit card
public boolean credit(double amount)

{
if(amount < 0)
return false;

Balance -= amount;
return true;

}
3
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Problem? We Want the Total Balance

public class client
{
public static void main(String[] args)
{
// first we create some credit-cards
CreditCard visa = new CreditCard(
""1234 5678 9012 3456", "William'™, 20000);
CreditCard mc = new CreditCard(
5678 9012 3456 7890", "William'™, 10000);

// transactions

visa.charge(100);

visa.credit(75); // $25 owing
mc.charge(250) ;

mc.credit(225); // another $25 owing

// what"s the grand total?
System.out.printIn("Total Owing: *
+ (visa.getBalance() + mc.getBalance()));
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The Big Picture

[ visaH CC{Name: “William”, Balance:$25} ]

[ mc -]—)[ CC{Name: “William”, Balance:$25} ]

= Right now, there are two separate objects with
no direct connection between them. So API
user:
= Must keep track of the cards
= Must know details of the cards
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Possible Problems?

[ visa H CC{Name: “William”, Balance:$25} ]

[ mc H CC{Name: “William”, Balance:$25} ]

= What if we've forgotten a card?
= or haven't been told about it?
= or are being defrauded?
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Another Problem?

[ mc H CC{lInterest:25%} ]

= Or, what if the question is to calculate the
monthly interest?

= We would need the client code to know details of the
card’s interest calculations, that really should be
contained within the CreditCard class implementation
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The Solution

[ visa4—>[ CC{Name: “William”, Balance:$25} ]

[ {Total Balance: $50} ]

[ mc 4—)[ CC{Name: “William”, Balance:$25} ]

= We need a single place to store
information common to both objects
= Easily Accessible
= but still Safe from the Outside World

CSE1030 14

Static versus Instance Data

[ visaH CC{Name: “William”, Balance:$25} ]}Instance

[ {Total Balance: $50} ]} Static

[ mc H CC{Name: “William”, Balance:$25} ]} Instance

= Instance is the data and code in an object
= Static is data and code common to all objects
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How does it look in the Code?

public class CreditCard

{

// instance variables/attributes/fields
private String Name;

private String Number;

private double Balance;

private double Limit;

// constructor
public CreditCard(String number, String name, double limit)

{
Name = name;
Number = number;
Balance = 0;
Limit = limit;
3
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// charge the credit card
public boolean charge(double amount)

{
if(amount < 0)
return false;
if(Balance + amount > Limit)
{
return false;
3
else
{
Balance += amount;
return true;
¥
}
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// credit the credit card
public boolean credit(double amount)

if(amount < 0)
return false;

Balance -= amount;

return true;

}
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Client Example: Secret Card (1/4)

public class client
public static void main(String[] args)

// first we create some credit-cards
CreditCard visa = new CreditCard(

""1234 5678 9012 3456, "William'™, 20000);
CreditCard mc = new CreditCard(

""5678 9012 3456 7890, "William™, 10000);

CSE1030 19

Client Example: Secret Card (2/4)

// transactions

visa.charge(100);

visa.credit(75); // $25 owing
mc.charge(250);

mc.credit(225); // another $25 owing

// do something else...
somethingelse.doit();

// what"s the grand total?

System.out.printIn(*Total Owing: “
+ CreditCard.getTotalBalance());
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Client Example: Secret Card (3/4)

public class somethingelse

{

static public void doit()

CreditCard AmEx = new CreditCard(
"9012 3456 7890 1234, "William™, 10000);
AmEx.charge(100) ;
3
}
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Client Example: Secret Card (4/4)

= Qutput Without Static Data (old way) is
wrong:
Total Owing: 50.0.

= Qutput With Static Data (old way) is

correct:
Total Owing: 150.0
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Review: Regular Classes:

= Regular Classes have:
= Instance Data (in the Objects)
= |Instance Code (does things with Objects)
= Static Data (Shared by All Objects)
= Static Code (Only does things with static data)

[ pl 4—)[ {Name: “Some Data”} J}Instance

Class [ {Static Data: “Some More Data”} }} Static

[ p2 H {Name: “Some Data”} ]} Instance

CSE1030 23

Inherent Relationships:
Static versus Non-Static Data

= Static Data is Best for

= Summary Statistics
= Counting, Serial Numbers, Profiling (Frequency, Time)
= Class-wide finals (Constants)

= Static Code is Best for

= Static Functions
(Little Utilities that don’t need an Object)

= main()
= Why?
= Pertain to a Class, Not Tied to an Object

CSE1030 24




CSE1030 — Lecture #6

= Review
= Static Data versus Instance Data >

Java Notation

= Static Utility Class Revisited
= Variable Hiding & Shadowing
= this

= We’re Done!
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Accessing Instance versus Static Data

= |nstance Data and Code require an object! No
object? No way to access them. Need the Name.

[ visa H {Name: “William”, ...} ]

= Static Data and Code do not require an object!
Can be accessed from the Class Name:

Factor [ Factor{smallestFactor()} ]
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Java API Notation (Outside View)

= |nstance Data and Code are accessed through
an object variable:

[ visa H {Name: “William”, ...} ]

visa.interestRate
visa.credit()

= Static Data and Code can be accessed through
an object or directly from the class:

Factor [ Factor{smallestFactor()} ]

visa.TotalBalance
Factor.smallestFactor(int C)
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Java Notation (Inside View)

= Inside the class, instance and static data can be
access directly — there is no required notational
distinction:

= |nstance Data and Code:

[ visa H {Name: “William”, ...} ]

interestRate
credit()

= Static Data and Code:

Factor [ Factor{smallestFactor()} ]

TotalBalance
smallestFactor(int C)
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Initialisation

= |nitialise statics when they are defined
(because the constructor is called once for each
object created)
private static int Number = 42;

= Initialise instance variables when the object is
constructed (i.e., in the Constructor)

class example {
private int Number;

example() { Number = 42; }

} CSE1030 29

Initialising Finals

= final denotes a constant
within a Class (i.e. static)
or within an Instance (Object)

= Why?
= Some constants pertain to the whole Class, whereas
other only to an object

= Example...
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cl

{

//
//
//

3

ass CoolNumber

final double Value;
static final int HowManyCoolNumbers = 3;

public CoolNumber(double v) { Value = v; }

public static void main(String[] args)

{
// define some numbers:
CoolNumber Phi = new CoolNumber(1.61803398874989484820);
CoolNumber E = new CoolNumber(2.71828182845904523536) ;
CoolNumber Pi = new CoolNumber(3.14159265358979323846);

System.out.printIn(*'*Here are "

+ HowManyCoolNumbers + ** cool numbers:');
System.out.printIn(Phi = " + Phi.Value);
System.out.printIn(E = " + E.Value);
System.out.printIn(Pi = " + Pi.Value);

3
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Output

> java CoolNumber
Here are 3 cool numbers:

Phi = 1.618033988749895
E = 2.718281828459045
Pi = 3.141592653589793

= Summary: Constant values (Final variables)
can occur in both Instances (Objects) and as
a static in the Class. Where you put them
depends upon what they mean (is the
constant relative to an object, or global?).
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The Implicit Parameter / Argument

= Think about these two lines of code:

visa.credit(10)
mc.credit(10)

= They both call this function:

// credit the credit card
public boolean credit(double amount)

{
if(amount < 0)
return false;

Balance -= amount;
TotalBalance -= amount;

return true;

}
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How does Java know which Object?

{ visaq—){ CC{Balance:$25} J ?

Implicit Parameter / Argument

= The idea is that the object by which an
instance function is called is an Implicit
Parameter, whereas our regular
parameters are Explicit:

visa.credit(10)

/ \

Implicit Explicit
Parameter Parameter
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[ mc .}—)[ CC{Balance:$75} ]
) ) = Incredit(),
// credit the credit card . i
public boolean credit(double amount) we Just write
{ « "o
if(amount < 0) _Bal'_ar?ce ! Java
return false; implicitly figures-
Balance -= amount; OUE which ObJeCt
TotalBalance -= amount; (Vlsa or mc) we
return true; are using
3
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You can Imagine the Code
Automatically Becomes:
visa.credit(10) mc.credit(10)
// credit the credit card // credit the credit card
public boolean public boolean
credit(double amount) credit(double amount)
{ {
if(amount < 0) if(amount < 0)
return false; return false;
visa.Balance|-= amount; mc.Balance |-= amount;
TotalBalance -= amount; TotalBalance -= amount;
return true; return true;
} 3

CSE1030 36




Nomenclature:

= |nstance = “in an Object”
= Has an Implicit Parameter / Argument
= Instance Data = Data in an Object

= Instance Code = Code that does things with an Object:
“needs an object”

= Static = “Not in an Object”
= Does Not have an Implicit Parameter / Argument
= Static Data = Data in the Class (not an object), where
the same copy of the data is accessible by all Code
= Static Code = Code that doesn't use an implicit
parameter to access any Objects

Instance
class CoolNumber (Implicit Parameter)
{ So we don’t have to

final double Value; ify the obi
static final int HowManyCoolNumbers = 37 specify the object
name

public CoolNumber(double v) { Value = v; }

public static void main(String[] args)

{
// define some numbers:
CoolNumber Phi = new CoolNumber(1.61803398874989484820);
CoolNumber E = new CoolNumber(2.71828182845904523536) ;
CoolNumber Pi = new CoolNumber(3.14159265358979323846) ;

System.out.printIn(*'Here are "

+ HowManyCoolNumbers + " cool numbers:™);
System.out.printIn("Phi = " + Phi.Value);
System.out.printIn(E = " + E.Value);
System.out.printIn("Pi = " + Pi.Value);

Not Implicit: So we have to
specify the object name CSE1030 38

= Example:
CSE1030 37
CSE1030 — Lecture #6
= Review
= Static Data versus Instance Data
= Java Notation
= Static Utility Class Revisited >

= Variable Hiding & Shadowing
= this
= We’re Done!
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Regular Classes Look Like This:

= Classes have:
= |nstance Data (In the Objects)
= |nstance Code (Does things with Objects)
= Static Data (Shared by All Objects)
= Static Code (Only does things with static data)

[ pl H {Name: “Some Data”} ]}Instance

Class [ {Static Data: “Some More Data”} J} Static

[ p2 H {Name: “Some Data”} ]} Instance
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Static Utility Classes Revisited

= Utility Classes have:
= Private Constructors
= No Objects
= Only Static Data and Code

— N —
pl £ B ~ Instance
e ———

Class [ {Static Data: “Some More Data”} ]} Static

e

p2 o> INammeome | - nstance
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Static Utility Classes Revisited

= Utility Classes have:
= Private Constructors
= No Objects
= Only Static Data
= Only Static Code

Class [ {Static Data: “Some More Data™} J} Static

CSE1030 42

Java Notation for Utility Classes

= Because Utility Classes have No Objects,
we have to access them through their
class name

Factor.smallestFactor(int C)

= Which “looks” like this:

Factor [ Factor{smallestFactor()} }
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CSE1030 — Lecture #6

= Review

= Static Data versus Instance Data

= Java Notation

= Static Utility Class Revisited

Variable Hiding & Shadowing >
= this

= We're Done!
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Variable Hiding / Shadowing

= You can define a “Local Variable” or
parameter to have the same name as a
Class Data Member

= Why?
= |t's confusing, so it's a bad programming
practice

= Example...
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public class Hidden Hidden Variable

{

static int Variable = 10;
public static void methodl()

Variable = 100;
System.out.printIn(’in 1: " + Variable);
¥

R R R Shadow Variables
public static void method2()
{

int Variable = 200;
System.out.printIn(in 2: " + Variable);

3
public static void method3(int Variable)

Variable = 300;
System.out.printIn(in 3: " + Variable);

public static void method4(int Variable)

Variable = Variable;
System.out.printIn(’in 4: " + Variable);
¥

public static void method5(int Variable)
Hidden.Variable = Variable;

System.out.printIn(*in 5: " + Variable);
}
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3
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public static void main(String[] args)
{
method1();
System.out.printin(main: " + Variable);
method2();
System.out.printin(“main: " + Variable);
method3(1000) ;
System.out.printIn(main: " + Variable);
method4(2000) ;
System.out.printIn(main: " + Variable);
method5(3000) ;
System.out.printin(main: " + Variable);
3
3
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Output

in 1: 100
main: 100
in 2: 200
main: 100
in 3: 300
main: 100
in 4: 2000
main: 100
in 5: 3000
main: 3000

= Hidden variables are neat, but confusing,
and can lead to hard-to-find bugs
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CSE1030 — Lecture #6

= Review

= Static Data versus Instance Data

= Java Notation

= Static Utility Class Revisited

= Variable Hiding & Shadowing

this :>
= We're Done!
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this

= |n instance code, the this variable is an
alias for the name of our object

[vba%—a{ {Name: “William”, ...} ]

visa.credit(10);
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this

= this equals the implicit argument

[vma%—a{ {Name: “William”, ...} ]

visa.credit(10);

credit()
{

}

this=visa
(Only inside the
instance function)
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Why do we need this?

= Since we can easily directly refer to:
= |nstance Data (Data inside Objects)
= Static Data (Data in the Class)
why do we need this?

= this allows us to explicitly refer to
Instance Data
= Sometimes good for clarity
= Solves Variable Hiding Problems
= Solves Inheritance Problems
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Java Documentation Uses for this

= this is frequently overused

= The Java documentation only lists 5
situations where you need to use this:

1. To call from one constructor to another

2. Nested Classes (one class defined inside
another one)

3. Passing References
4. Calling subclasses (Inheritance)
5. Fixing Variable Hiding Problems...
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public class Hidden This timeit’s an
{ / Instance Variable

int Variable = 10;

public void methodl1()

Variable = 100;
System.out._printIn(*in 1: " + Variable);

¥

public void method2()

{
int Variable = 200;
System.out.printin(’in 2: " + Variable);

}
public void method3(int Variable)

Variable = 300;
System.out.printIn("in 3: " + Variable);
3
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public void method4(int Variable)
Variable = Variable;
System.out.printIn(in 4: " + Variable);

}

public void method5(int Variable)
this.Variable = Variable;
System.out.printin('in 5: " + Variable);

}
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public static void main(String[] args)

{
Hidden h = new Hidden(Q);
h.method1(Q);
System.out.printin("main: " + h.Variable);
h_method2();
System.out.printin("main: " + h.Variable);
h_method3(1000);
System.out.printIn(main: " + h_Variable);
h.method4(2000);
System.out.printIn(main: " + h._Variable);
h.method5(3000);
System.out.printin("main: " + h.Variable);
}
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Output

in 1: 100
main: 100
in 2: 200
main: 100
in 3: 300
main: 100
in 4: 2000
main: 100
in 5: 3000
main: 3000

= Same output as before, same hiding of the
variable Variable, even though it's an

Instance variable this time.
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this and Cool Variable Hiding?

public class Cool

{
String Name;
int Age;
public Cool(String Name, int Age)
{
this.Name = Name;
this.Age = Age;
}

public void setName(String Name)

this.Name = Name;

¥

// rest of class
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Annoying Overuse of this

public class NotCool

{
String Name;
static int CountNameChanges = O;

public NotCool(String name, int age)

this.Name = name;
NotCool . CountNameChanges++;

¥

public void setName(String name)

{

this.Name = name;
NotCool . CountNameChanges++;

3

// ... rest of class
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I Apologise if you like to code this way

= Some textbooks and profs recommend the explicit
approach (this.var, class.var, for all references to
Instance or static variables)

= It makes explicitly clear which variables are instance
or static

= Although it is easier to accomplish this by variable name
prefixing:
= “Name” vs. “name”, or “iName” vs. “sName”

= Inthe end, it takes a lot more typing to merely
accomplish what Java does by default
= (Butit's great if you're getting paid by the character!)
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CSE1030 — Lecture #6

= Review
= Static Data versus Instance Data
= Java Notation

Static Utility Class Revisited

= Variable Hiding & Shadowing

= this

We're Done!

>
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Next topic...

Aggregation and Composition |
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