CSE1030 — Introduction to
Computer Science 11

Lecture #6

Mixing Static and
Non-Static Features

Goals for Today

= Goals:

= Understanding static versus instance
(non-static) data and code

= Practical: (Assignment #3!)

= You will need to use both static and
non-static data and code for the assignment

CSE1030 2

CSE1030 — Lecture #6

Review

= Static Data versus Instance Data
= Java Notation

= Static Utility Class Revisited

= Variable Hiding & Shadowing

= this

= We’re Done!

CSE1030 3

Important Concepts from Past Lectures

= In Java, Everything is a Class

= Classes Define Objects
= EEPE

= An Object Variable is

A Name,

An Arrow (pointer) to memory, and,
A Block of Memory

Person {“William", 36, 120}

= Static Utility Classes have no Objects

CSE1030 4

CSE1030 — Lecture #6

Review

] Static Data versus Instance Data

Java Notation

Static Utility Class Revisited
Variable Hiding & Shadowing
this

We’'re Done!

CSE1030 5

Recall the CreditCard Class (next 4)

public class CreditCard
{
// instance variables/attributes/fields
private String Name;
private String Number;
private double Balance;
private double Limit;

// constructor
public CreditCard(String number, String name, double limit)
{

// accessors

public String getName() { return Name;
public String getNumber() { return Number;
public double getBalance() { return Balance;
public double getLimit() { return Limit;

// mutator
public boolean setLimit(double limit)

{
if(limit > 0)
{

Limit = limit;
return true;
}
else
return false;

e

CSE1030 7

Name = name;
Number = number;
Balance = 0;
Limit = limit;
3
CSE1030 6
// charge the credit card
public boolean charge(double amount)
{
if(amount < 0)
return false;
if(Balance + amount > Limit)
{
return false;
3
else
Balance += amount;
return true;
3
3
CSE1030 8

// credit the credit card
public boolean credit(double amount)

{
if(amount < 0)
return false;

Balance -= amount;
return true;

}
3

CSE1030 9

Problem? We Want the Total Balance

public class client
{
public static void main(String[] args)
{
// first we create some credit-cards
CreditCard visa = new CreditCard(
""1234 5678 9012 3456", "William'™, 20000);
CreditCard mc = new CreditCard(
5678 9012 3456 7890", "William'™, 10000);

// transactions

visa.charge(100);

visa.credit(75); // $25 owing
mc.charge(250) ;

mc.credit(225); // another $25 owing

// what"s the grand total?
System.out.printIn("Total Owing: *
+ (visa.getBalance() + mc.getBalance()));

¥ CSE1030 10

The Big Picture

[visaH CC{Name: “William”, Balance:$25}]

[mc -]—)[CC{Name: “William”, Balance:$25}]

= Right now, there are two separate objects with
no direct connection between them. So API
user:
= Must keep track of the cards
= Must know details of the cards

CSE1030 11

Possible Problems?

[visa H CC{Name: “William”, Balance:$25}]

[mc H CC{Name: “William”, Balance:$25}]

= What if we've forgotten a card?
= or haven't been told about it?
= or are being defrauded?

CSE1030 12

Another Problem?

[mc H CC{lInterest:25%}]

= Or, what if the question is to calculate the
monthly interest?

= We would need the client code to know details of the
card’s interest calculations, that really should be
contained within the CreditCard class implementation

CSE1030 13

The Solution

[visa4—>[CC{Name: “William”, Balance:$25}]

[{Total Balance: $50}]

[mc 4—)[CC{Name: “William”, Balance:$25}]

= We need a single place to store
information common to both objects
= Easily Accessible
= but still Safe from the Outside World

CSE1030 14

Static versus Instance Data

[visaH CC{Name: “William”, Balance:$25}]}Instance

[{Total Balance: $50}]} Static

[mc H CC{Name: “William”, Balance:$25}]} Instance

= Instance is the data and code in an object
= Static is data and code common to all objects

CSE1030 15

How does it look in the Code?

public class CreditCard

{

// instance variables/attributes/fields
private String Name;

private String Number;

private double Balance;

private double Limit;

// constructor
public CreditCard(String number, String name, double limit)

{
Name = name;
Number = number;
Balance = 0;
Limit = limit;
3

CSE1030 16

// charge the credit card
public boolean charge(double amount)

{
if(amount < 0)
return false;
if(Balance + amount > Limit)
{
return false;
3
else
{
Balance += amount;
return true;
¥
}

CSE1030 17

// credit the credit card
public boolean credit(double amount)

if(amount < 0)
return false;

Balance -= amount;

return true;

}

CSE1030 18

Client Example: Secret Card (1/4)

public class client
public static void main(String[] args)

// first we create some credit-cards
CreditCard visa = new CreditCard(

""1234 5678 9012 3456, "William'™, 20000);
CreditCard mc = new CreditCard(

""5678 9012 3456 7890, "William™, 10000);

CSE1030 19

Client Example: Secret Card (2/4)

// transactions

visa.charge(100);

visa.credit(75); // $25 owing
mc.charge(250);

mc.credit(225); // another $25 owing

// do something else...
somethingelse.doit();

// what"s the grand total?

System.out.printIn(*Total Owing: “
+ CreditCard.getTotalBalance());

CSE1030 20

Client Example: Secret Card (3/4)

public class somethingelse

{

static public void doit()

CreditCard AmEx = new CreditCard(
"9012 3456 7890 1234, "William™, 10000);
AmEx.charge(100) ;
3
}

CSE1030 21

Client Example: Secret Card (4/4)

= Qutput Without Static Data (old way) is
wrong:
Total Owing: 50.0.

= Qutput With Static Data (old way) is

correct:
Total Owing: 150.0

CSE1030 22

Review: Regular Classes:

= Regular Classes have:
= Instance Data (in the Objects)
= |Instance Code (does things with Objects)
= Static Data (Shared by All Objects)
= Static Code (Only does things with static data)

[pl 4—)[{Name: “Some Data”} J}Instance

Class [{Static Data: “Some More Data”} }} Static

[p2 H {Name: “Some Data”}]} Instance

CSE1030 23

Inherent Relationships:
Static versus Non-Static Data

= Static Data is Best for

= Summary Statistics
= Counting, Serial Numbers, Profiling (Frequency, Time)
= Class-wide finals (Constants)

= Static Code is Best for

= Static Functions
(Little Utilities that don’t need an Object)

= main()
= Why?
= Pertain to a Class, Not Tied to an Object

CSE1030 24

CSE1030 — Lecture #6

= Review
= Static Data versus Instance Data >

Java Notation

= Static Utility Class Revisited
= Variable Hiding & Shadowing
= this

= We’re Done!

CSE1030 25

Accessing Instance versus Static Data

= |nstance Data and Code require an object! No
object? No way to access them. Need the Name.

[visa H {Name: “William”, ...}]

= Static Data and Code do not require an object!
Can be accessed from the Class Name:

Factor [Factor{smallestFactor()}]

CSE1030 26

Java API Notation (Outside View)

= |nstance Data and Code are accessed through
an object variable:

[visa H {Name: “William”, ...}]

visa.interestRate
visa.credit()

= Static Data and Code can be accessed through
an object or directly from the class:

Factor [Factor{smallestFactor()}]

visa.TotalBalance
Factor.smallestFactor(int C)

CSE1030 27

Java Notation (Inside View)

= Inside the class, instance and static data can be
access directly — there is no required notational
distinction:

= |nstance Data and Code:

[visa H {Name: “William”, ...}]

interestRate
credit()

= Static Data and Code:

Factor [Factor{smallestFactor()}]

TotalBalance
smallestFactor(int C)

CSE1030 28

Initialisation

= |nitialise statics when they are defined
(because the constructor is called once for each
object created)
private static int Number = 42;

= Initialise instance variables when the object is
constructed (i.e., in the Constructor)

class example {
private int Number;

example() { Number = 42; }

} CSE1030 29

Initialising Finals

= final denotes a constant
within a Class (i.e. static)
or within an Instance (Object)

= Why?
= Some constants pertain to the whole Class, whereas
other only to an object

= Example...

CSE1030 30

cl

{

//
//
//

3

ass CoolNumber

final double Value;
static final int HowManyCoolNumbers = 3;

public CoolNumber(double v) { Value = v; }

public static void main(String[] args)

{
// define some numbers:
CoolNumber Phi = new CoolNumber(1.61803398874989484820);
CoolNumber E = new CoolNumber(2.71828182845904523536) ;
CoolNumber Pi = new CoolNumber(3.14159265358979323846);

System.out.printIn(*'*Here are "

+ HowManyCoolNumbers + ** cool numbers:');
System.out.printIn(Phi = " + Phi.Value);
System.out.printIn(E = " + E.Value);
System.out.printIn(Pi = " + Pi.Value);

3
CSE1030 31

Output

> java CoolNumber
Here are 3 cool numbers:

Phi = 1.618033988749895
E = 2.718281828459045
Pi = 3.141592653589793

= Summary: Constant values (Final variables)
can occur in both Instances (Objects) and as
a static in the Class. Where you put them
depends upon what they mean (is the
constant relative to an object, or global?).

CSE1030 32

The Implicit Parameter / Argument

= Think about these two lines of code:

visa.credit(10)
mc.credit(10)

= They both call this function:

// credit the credit card
public boolean credit(double amount)

{
if(amount < 0)
return false;

Balance -= amount;
TotalBalance -= amount;

return true;

}

CSE1030 33

How does Java know which Object?

{ visaq—){ CC{Balance:$25} J ?

Implicit Parameter / Argument

= The idea is that the object by which an
instance function is called is an Implicit
Parameter, whereas our regular
parameters are Explicit:

visa.credit(10)

/ \

Implicit Explicit
Parameter Parameter

CSE1030 35

[mc .}—)[CC{Balance:$75}]
)) = Incredit(),
// credit the credit card . i
public boolean credit(double amount) we Just write
{ « "o
if(amount < 0) _Bal'_ar?ce ! Java
return false; implicitly figures-
Balance -= amount; OUE which ObJeCt
TotalBalance -= amount; (Vlsa or mc) we
return true; are using
3
CSE1030 34
You can Imagine the Code
Automatically Becomes:
visa.credit(10) mc.credit(10)
// credit the credit card // credit the credit card
public boolean public boolean
credit(double amount) credit(double amount)
{ {
if(amount < 0) if(amount < 0)
return false; return false;
visa.Balance|-= amount; mc.Balance |-= amount;
TotalBalance -= amount; TotalBalance -= amount;
return true; return true;
} 3

CSE1030 36

Nomenclature:

= |nstance = “in an Object”
= Has an Implicit Parameter / Argument
= Instance Data = Data in an Object

= Instance Code = Code that does things with an Object:
“needs an object”

= Static = “Not in an Object”
= Does Not have an Implicit Parameter / Argument
= Static Data = Data in the Class (not an object), where
the same copy of the data is accessible by all Code
= Static Code = Code that doesn't use an implicit
parameter to access any Objects

Instance
class CoolNumber (Implicit Parameter)
{ So we don’t have to

final double Value; ify the obi
static final int HowManyCoolNumbers = 37 specify the object
name

public CoolNumber(double v) { Value = v; }

public static void main(String[] args)

{
// define some numbers:
CoolNumber Phi = new CoolNumber(1.61803398874989484820);
CoolNumber E = new CoolNumber(2.71828182845904523536) ;
CoolNumber Pi = new CoolNumber(3.14159265358979323846) ;

System.out.printIn(*'Here are "

+ HowManyCoolNumbers + " cool numbers:™);
System.out.printIn("Phi = " + Phi.Value);
System.out.printIn(E = " + E.Value);
System.out.printIn("Pi = " + Pi.Value);

Not Implicit: So we have to
specify the object name CSE1030 38

= Example:
CSE1030 37
CSE1030 — Lecture #6
= Review
= Static Data versus Instance Data
= Java Notation
= Static Utility Class Revisited >

= Variable Hiding & Shadowing
= this
= We’re Done!

CSE1030 39

Regular Classes Look Like This:

= Classes have:
= |nstance Data (In the Objects)
= |nstance Code (Does things with Objects)
= Static Data (Shared by All Objects)
= Static Code (Only does things with static data)

[pl H {Name: “Some Data”}]}Instance

Class [{Static Data: “Some More Data”} J} Static

[p2 H {Name: “Some Data”}]} Instance

CSE1030 40

Static Utility Classes Revisited

= Utility Classes have:
= Private Constructors
= No Objects
= Only Static Data and Code

— N —
pl £ B ~ Instance
e ———

Class [{Static Data: “Some More Data”}]} Static

e

p2 o> INammeome | - nstance

CSE1030 41

Static Utility Classes Revisited

= Utility Classes have:
= Private Constructors
= No Objects
= Only Static Data
= Only Static Code

Class [{Static Data: “Some More Data™} J} Static

CSE1030 42

Java Notation for Utility Classes

= Because Utility Classes have No Objects,
we have to access them through their
class name

Factor.smallestFactor(int C)

= Which “looks” like this:

Factor [Factor{smallestFactor()} }

CSE1030 43

CSE1030 — Lecture #6

= Review

= Static Data versus Instance Data

= Java Notation

= Static Utility Class Revisited

Variable Hiding & Shadowing >
= this

= We're Done!

CSE1030 44

Variable Hiding / Shadowing

= You can define a “Local Variable” or
parameter to have the same name as a
Class Data Member

= Why?
= |t's confusing, so it's a bad programming
practice

= Example...

CSE1030 45

public class Hidden Hidden Variable

{

static int Variable = 10;
public static void methodl()

Variable = 100;
System.out.printIn(’in 1: " + Variable);
¥

R R R Shadow Variables
public static void method2()
{

int Variable = 200;
System.out.printIn(in 2: " + Variable);

3
public static void method3(int Variable)

Variable = 300;
System.out.printIn(in 3: " + Variable);

public static void method4(int Variable)

Variable = Variable;
System.out.printIn(’in 4: " + Variable);
¥

public static void method5(int Variable)
Hidden.Variable = Variable;

System.out.printIn(*in 5: " + Variable);
}

CSE1030 47

3
CSE1030 46
public static void main(String[] args)
{
method1();
System.out.printin(main: " + Variable);
method2();
System.out.printin(“main: " + Variable);
method3(1000) ;
System.out.printIn(main: " + Variable);
method4(2000) ;
System.out.printIn(main: " + Variable);
method5(3000) ;
System.out.printin(main: " + Variable);
3
3
CSE1030 48

Output

in 1: 100
main: 100
in 2: 200
main: 100
in 3: 300
main: 100
in 4: 2000
main: 100
in 5: 3000
main: 3000

= Hidden variables are neat, but confusing,
and can lead to hard-to-find bugs

CSE1030 49

CSE1030 — Lecture #6

= Review

= Static Data versus Instance Data

= Java Notation

= Static Utility Class Revisited

= Variable Hiding & Shadowing

this :>
= We're Done!

CSE1030 50

this

= |n instance code, the this variable is an
alias for the name of our object

[vba%—a{ {Name: “William”, ...}]

visa.credit(10);

CSE1030 51

this

= this equals the implicit argument

[vma%—a{ {Name: “William”, ...}]

visa.credit(10);

credit()
{

}

this=visa
(Only inside the
instance function)

CSE1030 52

Why do we need this?

= Since we can easily directly refer to:
= |nstance Data (Data inside Objects)
= Static Data (Data in the Class)
why do we need this?

= this allows us to explicitly refer to
Instance Data
= Sometimes good for clarity
= Solves Variable Hiding Problems
= Solves Inheritance Problems

CSE1030 53

Java Documentation Uses for this

= this is frequently overused

= The Java documentation only lists 5
situations where you need to use this:

1. To call from one constructor to another

2. Nested Classes (one class defined inside
another one)

3. Passing References
4. Calling subclasses (Inheritance)
5. Fixing Variable Hiding Problems...

CSE1030 54

public class Hidden This timeit’s an
{ / Instance Variable

int Variable = 10;

public void methodl1()

Variable = 100;
System.out._printIn(*in 1: " + Variable);

¥

public void method2()

{
int Variable = 200;
System.out.printin(’in 2: " + Variable);

}
public void method3(int Variable)

Variable = 300;
System.out.printIn("in 3: " + Variable);
3

CSE1030 55

public void method4(int Variable)
Variable = Variable;
System.out.printIn(in 4: " + Variable);

}

public void method5(int Variable)
this.Variable = Variable;
System.out.printin('in 5: " + Variable);

}

CSE1030 56

public static void main(String[] args)

{
Hidden h = new Hidden(Q);
h.method1(Q);
System.out.printin("main: " + h.Variable);
h_method2();
System.out.printin("main: " + h.Variable);
h_method3(1000);
System.out.printIn(main: " + h_Variable);
h.method4(2000);
System.out.printIn(main: " + h._Variable);
h.method5(3000);
System.out.printin("main: " + h.Variable);
}

CSE1030 57

Output

in 1: 100
main: 100
in 2: 200
main: 100
in 3: 300
main: 100
in 4: 2000
main: 100
in 5: 3000
main: 3000

= Same output as before, same hiding of the
variable Variable, even though it's an

Instance variable this time.

CSE1030 58

this and Cool Variable Hiding?

public class Cool

{
String Name;
int Age;
public Cool(String Name, int Age)
{
this.Name = Name;
this.Age = Age;
}

public void setName(String Name)

this.Name = Name;

¥

// rest of class

CSE1030 59

Annoying Overuse of this

public class NotCool

{
String Name;
static int CountNameChanges = O;

public NotCool(String name, int age)

this.Name = name;
NotCool . CountNameChanges++;

¥

public void setName(String name)

{

this.Name = name;
NotCool . CountNameChanges++;

3

// ... rest of class

CSE1030 60

I Apologise if you like to code this way

= Some textbooks and profs recommend the explicit
approach (this.var, class.var, for all references to
Instance or static variables)

= It makes explicitly clear which variables are instance
or static

= Although it is easier to accomplish this by variable name
prefixing:
= “Name” vs. “name”, or “iName” vs. “sName”

= Inthe end, it takes a lot more typing to merely
accomplish what Java does by default
= (Butit's great if you're getting paid by the character!)

CSE1030 61

CSE1030 — Lecture #6

= Review
= Static Data versus Instance Data
= Java Notation

Static Utility Class Revisited

= Variable Hiding & Shadowing

= this

We're Done!

>

CSE1030 62

Next topic...

Aggregation and Composition |

CSE1030 63

