
Lecture #3

CSE1030 – Introduction to
Computer Science II

Non-Static Features
of Java Classes I

CSE1030 2

Goals for Today
Goals:

Understand Objects Better
“Inherent Relationships”

Practical: (Assignment #2!)
Features of a real Java class
Details, details, details… particularly:

Constructors
main()

CSE1030 3

CSE1030 – Lecture #3
Review
The Person Class – Holding Data
The Default Constructor
Grouping Data and Code Together
Copy Constructors
Main() as a Testing Facility
We’re Done!

CSE1030 4

Review: OOP Theory
Big Ideas of Object Oriented Programming:

Encapsulation
Data & Code in single well-defined location
Hide complexity away, only expose a simple API

Takes Advantage of Inherent Relationships
In the Data, System, and Algorithms to be processed

Java is an Object Oriented Language
In Java: Everything is an Object
A Java Class is how Objects are Defined

CSE1030 5

Review: Elements of a Java Class
// any needed package statement
// any needed import statements

public class ClassName
{

// data declarations
private int i;

// constructor
ClassName(){ i = 0; };

// method definitions
int getI() { return i; }
void setI(int pi) {i = pi; }

}

1. Name the Class

2. How to Construct an Object

3. Who can use, and How

4. Defines the Data

5. Contains the Code

CSE1030 6

Review:
How it Looks when Running

Person {…}

{Frank} {Anna} {Joe}

Writing a Class is Building a Piece of the
Mosaic that is your Program

CourseGrades {…}

{A++} {A+} {B+}

Class:

Class:

Objects:

Objects:

CSE1030 7

CSE1030 – Lecture #3
Review
The Person Class – Holding Data
The Default Constructor
Grouping Data and Code Together
Copy Constructors
Main() as a Testing Facility
We’re Done!

CSE1030 8

Creating a Person Object

Want to:
Employ OOP Philosophy of Good Organisation
Classes should reflect the Inherent Relationships

Persons Have Attributes
Name
Age
Weight
etc.

CSE1030 9

Data / Attributes
A lot of the OOP Philosophy has to do with
Accessing and Changing the Data

Advice: Keep Data private

Allow Access via Accessor & Mutator Functions:
Accessors getData() / Mutators setData()
This gives the API creator Control

You can Act when something has Changed
because you Made them Call a Function

Isolation & Implementation Independence
You can freely Change the Implementation
No one will Know, No one will have to Change their Code!

CSE1030 10

The Person Class
public class Person
{

// attributes
private String Name;
private int Age;

// no constructors

// methods
public String getName() {return Name;}
public void setName(String n) { Name = n; }

public int getAge() {return Age;}
public void setAge(int a) { Age = a; }

}

CSE1030 11

CSE1030 – Lecture #3
Review
The Person Class – Holding Data
The Default Constructor
Grouping Data and Code Together
Copy Constructors
Main() as a Testing Facility
We’re Done!

CSE1030 12

Constructors
Person Class uses the Default Constructor

No Constructor Default Constructor
Default Constructor Initialises:

numerics = 0
booleans = false
objects = null

Why would you use the Default Constructor?
Because it’s Easy
Less Coding

For simple Classes, this is Fine
But the Person Class is not Simple…

CSE1030 13

A Client who uses the Person Class

public class client
{

public static void main(String[] args)
{

// First we want to create a person
Person p = new Person();
p.setName("William");
p.setAge(36);

// Do something with Person object...
// ...

}
}

CSE1030 14

Problem #1 – What is a Valid Person?
public class client
{

public static void main(String[] args)
{

// First we want to create a person
Person p = new Person();

p.setName("William");

p.setAge(36);

// Do something with Person object...
// ...

}
}

What exists at this
point?

What exists at this
point?

CSE1030 15

Default Constructor Problems
Incomplete Construction

Could Lead to Problems!
Other Code may Assume objects have certain
Properties

Person Default Constructor forces the API user
to know how to create an object

What if they forget to set the Age?

The Responsibility of Proper Construction
rests with the API Code not with the User of
the API Code!!

CSE1030 16

A Better Person Class
public class Person

{

private String Name;

private int Age;

// constructor

Person(String name, int age)

{ Name = name; Age = age; }

// methods

// ...

}

CSE1030 17

Clients Must Use New Constructor

The Old Code Doesn’t Work Anymore!
javac client.java:

client.java:7: cannot find symbol

symbol : constructor Person()

location: class Person

Person p = new Person();

^

1 error

CSE1030 18

Improved Client

public class client
{

public static void main(String[] args)
{

// First we want to create a person
Person p = new Person("William", 36);

// Do something with Person object...
// ...

}
}

New constructor Must be used:

CSE1030 19

CSE1030 – Lecture #3
Review
The Person Class – Holding Data
The Default Constructor
Grouping Data and Code Together
Copy Constructors
Main() as a Testing Facility
We’re Done!

CSE1030 20

Grouping Data & Code Together (1)

Good Organisation supports even Large or
Complex Programs

Groups / Modules / Classes should reflect
the Inherent Relationships

Example: Minimum Age to Drive

CSE1030 21

One Possibility… Do it in the Client

public class client
{

public static void main(String[] args)
{

// First we want to create a person
Person p = new Person("William", 36);

// Old enough to drive?
if(p.getAge() >= 16)

System.out.println(p.getName()
+ " May Apply for a "
+ "Driver's Licence");

}
}

Output: William May Apply for a Driver’s Licence
CSE1030 22

Grouping Data & Code Together (2)

Not Well Organised

Doesn’t reflect the Inherent Relationship
Age testing Directly Relates to the State of a
Person object, so it should be done Inside the
Object

Otherwise Users of API are Required to
Know Internal Things, and to be Consistent

What if somebody forgets the driving age, or
makes a mistake and uses the wrong age?

CSE1030 23

An Even Better Person Class
public class Person
{

// attributes

final int DrivingAge = 16;

//...

// methods
//...
public boolean mayDrive()

{ return Age >= DrivingAge; }
}

CSE1030 24

Much Better Client
public class client
{

public static void main(String[] args)
{

// First we want to create a person
Person p = new Person("William", 36);

// Old enough to drive?
if(p.mayDrive())

System.out.println(p.getName()
+ " May Apply for a "
+ "Driver's Licence");

}
}

Output: William May Apply for a Driver’s Licence

CSE1030 25

Summarising Ideas

The attribute final defines a constant
Something that will never change value

boolean mayDrive()
Encapsulates the Complexity

User of the API is Freed from Having to Know
Things about Person Class

Increases the Consistency

CSE1030 26

CSE1030 – Lecture #3
Review
The Person Class – Holding Data
The Default Constructor
Grouping Data and Code Together
Copy Constructors
Main() as a Testing Facility
We’re Done!

CSE1030 27

Client wants a Copy
public class client
{

public static void main(String[] args)
{

// First we want to create a person
Person p = new Person("William", 36);

// I'm so great, there should be 2 of me...
Person p2 = new Person(p.getName(),

p.getAge());
}

}

CSE1030 28

Copying an Object - Problems?

Sometimes you need to a Copy an Object
Maybe you’re going to give one away
to another piece of code you don’t trust
Maybe you need to do something that will destroy or
modify the object, but you still want the original

But the Example Client way of copying:
requires the client to know how to build an object
Assumes that there is No Hidden Private Data
Is that always a valid assumption? (Weight?)
Is clumsy (shouldn’t it be easier than that)?

CSE1030 29

Person Class (Part 1)
public class Person
{

// attributes
private String Name;
private int Age;
private int Weight;
final int DrivingAge = 16;

// constructor (Assumes no Weight info available)
Person(String name, int age)

{ Name = name; Age = age; Weight = -1; }

// constructor (With Weight info)
Person(String name, int age, int weight)

{ Name = name; Age = age; Weight = weight; }

Magic
Number

CSE1030 30

Person Class (Part 2)
// copy constructor
Person(Person p)

{ Name = p.Name; Age = p.Age; Weight = p.Weight; }

// methods
public String getName() {return Name;}
public void setName(String n) { Name = n; }

public int getAge() {return Age;}
public void setAge(int a) { Age = a; }

public void setWeight(int w) { Weight = w; }

public boolean mayDrive() { return Age >= DrivingAge; }
}

Missing
Accessor

CSE1030 31

Better Copying Client
public class client2
{

public static void main(String[] args)
{

// First we want to create a person
Person p = new Person("William", 36);

// I'm so great, there should be 2 of me...
// Note that, because of hidden attribute
// weight, we can’t copy the other way
Person p2 = new Person(p);

}
}

CSE1030 32

Overloaded Constructors
More than 1 constructor!

Basic Constructor:
Person(String name, int age)

More Advanced Constructor:
Person(String name, int age, int weight)

Copy Constructor:
Person(Person p)

Overloading
Two functions with the same name?

They are different if their Parameters are Different
Terminology: Method’s Signature must be Unique

CSE1030 33

CSE1030 – Lecture #3
Review
The Person Class – Holding Data
The Default Constructor
Grouping Data and Code Together
Copy Constructors
Main() as a Testing Facility
We’re Done!

CSE1030 34

main() as a Testing Facility

Last Class we talked about Multiple main()
functions (1 per class in program)

We said:
Every class can have its own main
Only controlling class’s main gets run at start

Why?
Testing the individual classes!!
Include Testing Client in Person Class, not External

CSE1030 35

Testing Person Class in main()
public class Person
{

// …stuff omitted for brevity…

// Testing
public static void main(String[] args)
{

Person p = new Person("William", 36, 120);
Person p2 = new Person(p);

// Test Copy, Did it work? Can check private Data!!
if(p2.getName().equals("William")
&& p2.getAge() == 36
&& p2.Weight == 120)

System.out.print("Copy Constructor Test Passed!");
else

System.err.print("Copy Constructor Test Failed!");
}

} CSE1030 36

main() for Testing – Summary

main() is a part of the class, so
It has Access to All Data and Code
Even Private Data and Code

Using main to do Unit Testing means
Your tests are in one easy to find place
And they are With the Code that they Test!

CSE1030 37

CSE1030 – Lecture #3
Review
The Person Class – Holding Data
The Default Constructor
Grouping Data and Code Together
Copy Constructors
Main() as a Testing Facility
We’re Done!

CSE1030 38

Next topic…

Non-Static Features
of Java Classes II

