CSE1030 — Introduction to
Computer Science 11

Lecture #3

Non-Static Features
of Java Classes |

Goals for Today

= Goals:
= Understand Objects Better
= “Inherent Relationships”

= Practical: (Assignment #2!)
= Features of a real Java class

= Details, details, details... particularly:
= Constructors
=main()

CSE1030 2

CSE1030 — Lecture #3

Review

= The Person Class — Holding Data
= The Default Constructor

= Grouping Data and Code Together
= Copy Constructors

= Main() as a Testing Facility

= We're Donel

CSE1030 3

Review: OOP Theory

= Big Ideas of Object Oriented Programming:

= Encapsulation
= Data & Code in single well-defined location
= Hide complexity away, only expose a simple API

= Takes Advantage of Inherent Relationships
= In the Data, System, and Algorithms to be processed

= Java is an Object Oriented Language
= InJava: Everything is an Object
= A Java Class is how Objects are Defined

CSE1030 4

Review: Elements of a Java Class

// any needed package statement
// any needed import statements

1. Name the Class i)
public class ClassName

2. How to Construct an Qbject /7 data declarations
3. Who can use, and How private int i

. // constructor
4. Defines the Data ClassName(){ i = 0; };

5. // method definitions

CSE1030 5

Review:
How it Looks when Running

= Writing a Class is Building a Piece of the
Mosaic that is your Program

Objects: [{A++}] [{A"}] [{B’f}]

Objects:

Class: Person {...}

CSE1030 6

CSE1030 — Lecture #3

= Review

« The Person Class — Holding Data >
= The Default Constructor

= Grouping Data and Code Together

= Copy Constructors

= Main() as a Testing Facility

= We’re Done!

CSE1030 7

Creating a Person Object

= Want to:
= Employ OOP Philosophy of Good Organisation
= Classes should reflect the Inherent Relationships

= Persons Have Attributes
= Name
= Age
= Weight
= etc.

CSE1030 8

Data / Attributes

= A lot of the OOP Philosophy has to do with
Accessing and Changing the Data

= Advice: Keep Data private

= Allow Access via Accessor & Mutator Functions:
= Accessors > getData() / Mutators - setData()

= This gives the API creator Control

= You can Act when something has Changed
because you Made them Call a Function

= |solation & Implementation Independence

= You can freely Change the Implementation
No one will Know, No one will have to Change their Code!

CSE1030 9

The Person Class

public class Person

{

// attributes
private String Name;
private int Age;

// no constructors

// methods

public String getName() {return Name;}
public void setName(String n) { Name = n; }

public int getAge() {return Age;}
public void setAge(int a) { Age = a; }

CSE1030 10

CSE1030 — Lecture #3

= Review

= The Person Class — Holding Data
The Default Constructor

= Grouping Data and Code Together
= Copy Constructors

= Main() as a Testing Facility

= We're Donel

CSE1030 11

Constructors

= Person Class uses the Default Constructor
= No Constructor = Default Constructor

= Default Constructor Initialises:
= numerics =0
= booleans = false
= objects = null

= Why would you use the Default Constructor?
= Because it's Easy
= Less Coding

= For simple Classes, this is Fine
= But the Person Class is not Simple...

CSE1030 12

A Client who uses the Person Class

public class client
{
public static void main(String[] args)
{
// First we want to create a person
Person p = new Person();
p.setName("William™);
p-setAge(36);

// Do something with Person object...
/7 ...

CSE1030 13

Problem #1 — What is a VValid Person?

public class client

{
public static void main(String[] args)

{

// First we want to create a person
Person p = new Person();

p-setName("William™);
p-setAge(36);

// Do something with Person object...
// ..

} CSE1030 14

Default Constructor Problems

= Incomplete Construction

= Could Lead to Problems!
Other Code may Assume objects have certain
Properties

= Person Default Constructor forces the API user
to know how to create an object
= What if they forget to set the Age?

= The Responsibility of Proper Construction
rests with the API Code not with the User of
the API Codel!!

CSE1030 15

A Better Person Class

public class Person

{

private String Name;

private int Age;

// constructor
Person(String name, int age)

{ Name = name; Age = age; }

// methods
/7 ...

} CSE1030 16

Clients Must Use New Constructor

= The Old Code Doesn’t Work Anymore!
= javac client.java:

client.java:7: cannot find symbol
symbol : constructor Person()
location: class Person

Person p = new Person();

N

1 error

CSE1030 17

Improved Client

= New constructor Must be used:

public class client

public static void main(String[] args)
{

// First we want to create a person
Person p = new Person(C*William™, 36);

// Do something with Person object...
V7

CSE1030 18

CSE1030 — Lecture #3

= Review

= The Person Class — Holding Data

= The Default Constructor

Grouping Data and Code Together >
= Copy Constructors

= Main() as a Testing Facility

= We're Donel

CSE1030 19

Grouping Data & Code Together (1)

= Good Organisation supports even Large or
Complex Programs

= Groups / Modules / Classes should reflect
the Inherent Relationships

= Example: Minimum Age to Drive

CSE1030 20

One Possibility... Do it in the Client

public class client
{
public static void main(String[] args)
{
// First we want to create a person
Person p = new Person("William™, 36);

// 0ld enough to drive?
if(p.getAge() >= 16)
System.out.printIn(p.getName()
+ " May Apply for a "
+ "Driver"s Licence");

Output: William May Apply for a Driver’s Licence
CSE1030 21

Grouping Data & Code Together (2)

= Not Well Organised

= Doesn't reflect the Inherent Relationship

= Age testing Directly Relates to the State of a
Person object, so it should be done Inside the
Object

= Otherwise Users of API are Required to
Know Internal Things, and to be Consistent

= What if somebody forgets the driving age, or
makes a mistake and uses the wrong age?

CSE1030 22

An Even Better Person Class

public class Person
{
// attributes

final int DrivingAge = 16;

S

// methods
//. ..
public boolean mayDrive()
{ return Age >= DrivingAge; }

CSE1030 23

Much Better Client

public class client
{
public static void main(String[] args)
{
// First we want to create a person
Person p = new Person(*William", 36);

// Old enough to drive?
if(p-mayDrive())
System.out.printin(p.getName()
+ " May Apply for a "
+ "Driver"s Licence");

Output: William May Apply for a Driver’s Licence
CSET030 24

Summarising ldeas

= The attribute final defines a constant
= Something that will never change value

= boolean mayDrive()
Encapsulates the Complexity

= User of the API is Freed from Having to Know
Things about Person Class

= Increases the Consistency

CSE1030 25

CSE1030 — Lecture #3

= Review

= The Person Class — Holding Data
= The Default Constructor

= Grouping Data and Code Together
Copy Constructors

= Main() as a Testing Facility

= We’re Done!

CSE1030 26

Client wants a Copy

public class client

{

public static void main(String[] args)

{
// First we want to create a person
Person p = new Person("William™, 36);

// 1°m so great, there should be 2 of me...
Person p2 = new Person(p.getName(),

p.getAge));

CSE1030 27

Copying an Object - Problems?

= Sometimes you need to a Copy an Object
= Maybe you're going to give one away
to another piece of code you don't trust

= Maybe you need to do something that will destroy or
modify the object, but you still want the original

= But the Example Client way of copying:
= requires the client to know how to build an object

= Assumes that there is No Hidden Private Data
Is that always a valid assumption? (Weight?)

= |s clumsy (shouldn't it be easier than that)?

CSE1030 28

Person Class (Part 1)

public class Person
{
// attributes
private String Name;
private int Age;
private int Weight;
final int DrivingAge = 16;

// constructor (Assumes no Weight info available)
Person(String name, int age)
{ Name = name; Age = age; Weight = -1; }

Magic
// constructor (With Weight info) Number

Person(String name, int age, int weight)
{ Name = name; Age = age; Weight = weight; }

CSE1030 29

Person Class (Part 2)

// copy constructor
Person(Person p)
{ Name = p.Name; Age = p.Age; Weight = p.Weight; }

// methods
public String getName() {return Name;}
public void setName(String n) { Name = n; }

public int getAge() {return Age;}
public void setAge(int a) { Age = a; }

Missing
_
public void setWeight(int w) { Weight = w; } | Accessor

public boolean mayDrive() { return Age >= DrivingAge; }

CSE1030 30

Better Copying Client

public class client2
{
public static void main(String[] args)
{
// First we want to create a person
Person p = new Person("William™, 36);

// 1"m so great, there should be 2 of me...
// Note that, because of hidden attribute
// weight, we can’t copy the other way
Person p2 = new Person(p);

CSE1030 31

Overloaded Constructors

= More than 1 constructor!

= Basic Constructor:
Person(String name, int age)

= More Advanced Constructor:
Person(String name, int age, int weight)

= Copy Constructor:
Person(Person p)

= Qverloading

= Two functions with the same name?
= They are different if their Parameters are Different
= Terminology: Method’s Signature must be Unique

CSE1030 32

CSE1030 — Lecture #3

= Review

= The Person Class — Holding Data

= The Default Constructor

= Grouping Data and Code Together

= Copy Constructors

Main() as a Testing Facility >
= We’re Done!

CSE1030 33

main() as a Testing Facility

= Last Class we talked about Multiple main()
functions (1 per class in program)

= We said:
= Every class can have its own main
= Only controlling class’s main gets run at start

= Why?

= Testing the individual classes!!
= Include Testing Client in Person Class, not External

CSE1030 34

Testing Person Class in main()

public class Person

{
// .stuff omitted for brevity..

// Testing

public static void main(String[] args)

{
Person p = new Person(*William"™, 36, 120);
Person p2 = new Person(p);

// Test Copy, Did it work?
if(p2.getName() .equalsC*'William™)
&& p2.getAge() == 36

&& == 120)

System.out.print(**Copy Constructor Test Passed!™);
else
System.err.print(**Copy Constructor Test Failed!™);

} CSE1030 35

main() for Testing — Summary

= main() is a part of the class, so
= |t has Access to All Data and Code
= Even Private Data and Code

= Using main to do Unit Testing means
= Your tests are in one easy to find place
= And they are With the Code that they Test!

CSE1030 36

CSE1030 — Lecture #3

= Review

= The Person Class — Holding Data

= The Default Constructor

= Grouping Data and Code Together

= Copy Constructors

= Main() as a Testing Facility

We’'re Done! >

CSE1030 37

Next topic...

Non-Static Features
of Java Classes |1

CSE1030 38

