
Lecture #2

CSE1030 – Introduction to
Computer Science II

Introduction to
Object Oriented Programming

CSE1030 2

Goals for Today
Theory:

Learn a little about
Object Oriented Programming

Practical: (Assignment #1!)
How to create a Java class
What makes a class a Static or Utility Class
JavaDocs

CSE1030 3

CSE1030 – Lecture #2
Intro to Object Oriented Programming
Elements of a Java Class
Utility Classes
JavaDoc
We’re Done!

CSE1030 4

Idea Behind OOP
Make it easier to
develop and maintain
large or complex
software systems

Originated in the
original Graphical User
Interface research
projects (complex!)

Fundamental Ideas:
Organise Data and Code into Modules
Formalise the way one module interacts with another
(We call this the Interface between the Modules)

Sketchpad (1963)

CSE1030 5

Object Oriented Programming
Object Oriented Programming

Example:

OS

Mouse Driver

TouchPad Driver

TouchScreen Driver

HW Driver

HW Driver

HW Driver

CSE1030 6

Object Oriented Programming
Object Oriented Programming

Is Not: Task Oriented
Is Not: Library Oriented

OS

Mouse Driver

TouchPad Driver

TouchScreen Driver

HW Driver

HW Driver

HW Driver

CSE1030 7

Object Oriented Programming
Object Oriented Programming

Is: A Different Way of Thinking About the
Organisation of the Program and its Data

OS

Mouse Driver

TouchPad Driver

TouchScreen Driver

HW Driver

HW Driver

HW Driver

CSE1030 8

Why OOP?
Encapsulation

Data & Code* in single well-defined location
Hide complexity away, on expose a simple API**

Take Advantage of Inherent Relationships
Polymorphism

Objects that do similar things are often used similarly
Inheritance

Many things are “a kind of…” something else

*Code = Software
**API = Application Programming Interface

CSE1030 9

Java and OOP
Java is an Object Oriented Language

Big Idea:
In Java, Everything is an Object*
(* almost, we’ll talk more about this later)

And a Java Class is how Objects are
Defined

CSE1030 10

Java Classes
Classes describe Objects Important Idea!
(Every Object has a Class)

Java Class Definition: (we’ll come back to this)

1. Names the Class
2. Describes How to Construct an Object of the

Class
3. Stipulates Who can use our Objects, and How
4. Defines the Data in the Objects (and in the Class)
5. Contains all of the Code pertaining to the Objects

CSE1030 11

How it Normally Looks when Running

Class DataBase {…}

Object #1
{DB #1}

Object #2
{DB #2}

Object #3
{DB #3}

CSE1030 12

CSE1030 – Lecture #2
Intro to Object Oriented Programming
Elements of a Java Class
Utility Classes
JavaDoc
Parameters and Parameter Passing
We’re Done!

CSE1030 13

Elements of a Java Class
// any needed package statement
// any needed import statements

public class ClassName
{

// data declarations
private int i;

// constructor
ClassName(){ i = 0; };

// method definitions
int getI() { return i; }
void setI(int pi) {i = pi; }

}

CSE1030 14

Elements of a Java Class
// any needed package statement
// any needed import statements

public class ClassName
{

// data declarations
private int i;

// constructor
ClassName(){ i = 0; };

// method definitions
int getI() { return i; }
void setI(int pi) {i = pi; }

}

1. Name the Class

2. How to Construct an Object

3. Who can use, and How

4. Defines the Data

5. Contains the Code

CSE1030 15

Elements of a Java Class - Name
// any needed package statement
// any needed import statements

public class ClassName
{

// data declarations
private int i;

// constructor
ClassName(){ i = 0; };

// method definitions
int getI() { return i; }
void setI(int pi) {i = pi; }

}

1. Name the Class
The name should be
unique and meaningful
Class name must be the
same as the name of the
file, for example this class
should be saved in a file
called “ClassName.java”

CSE1030 16

Elements of a Java Class - Constructor
// any needed package statement
// any needed import statements

public class ClassName
{

// data declarations
private int i;

// constructor
ClassName(){ i = 0; };

// method definitions
int getI() { return i; }
void setI(int pi) {i = pi; }

}

2. How to Construct an Object

This function is called the
Constructor
Its primary purpose is to initialise the
data elements (like the variable i)
It must have the same name as the
class
It does not have a “return type”, its
return type is implicit
If you do not write a constructor for a
class, then one is automatically
generated for you
Consequently, if you do not want
people to be able to create objects
of this type, you must use an access
specifier (e.g., “private”)

CSE1030 17

Elements of a Java Class - Access
// any needed package statement
// any needed import statements

public class ClassName
{

// data declarations
private int i;

// constructor
ClassName(){ i = 0; };

// method definitions
int getI() { return i; }
void setI(int pi) {i = pi; }

}

3. Who can use, and How

Access Specifiers control who
has access to what parts:

public – everybody
protected – only related classes
(this class, subclass, package*)
private – only this class
‘none’ ~ protected (no sub classes)

Only 1 public class per file (class
with the same name as the file)
Can be applied to members too:
private int i;

* A Package is a group of Classes. Classes without
package specifiers go into the default package. CSE1030 18

Elements of a Java Class - Data
// any needed package statement
// any needed import statements

public class ClassName
{

// data declarations
private int i;

// constructor
ClassName(){ i = 0; };

// method definitions
int getI() { return i; }
void setI(int pi) {i = pi; }

}

4. Defines the Data
Data within a class is usually
made private
Accessor functions are used to
control access to this internal
data, examples
Mutators change data values
The data members are
initialised by the constructor

CSE1030 19

Elements of a Java Class - Code
// any needed package statement
// any needed import statements

public class ClassName
{

// data declarations
private int i;

// constructor
ClassName(){ i = 0; };

// method definitions
int getI() { return i; }
void setI(int pi) {i = pi; }

}

5. Contains the Code
All operations pertaining to the
objects of this class should be
performed by functions defined
right here, in this class.
This way, everybody can see all
of the related data and code in
one place.

CSE1030 20

CSE1030 – Lecture #2
Intro to Object Oriented Programming
Elements of a Java Class
Utility Classes
JavaDoc
We’re Done!

CSE1030 21

Definition of a Utility Class
A Class that contains a common often re-used
function (or family of functions)…

No Objects – usually they are collections of
functions

Examples:
java.lang.Math
java.lang.System
java.util.Collections

CSE1030 22

No Objects?
Why would we use an Object Oriented
Language to write code that doesn’t have
any objects?

ANSWER: What if I have a very simple
little thing that just doesn’t need classes?
Like Adding a Couple of Numbers?
What code do I actually need?

CSE1030 23

public class DeclareVariables
{

public static void main(String[] args)
{

int A = 10;
int B = 20;
int C = A + B;

System.out.println("The answer is: " + C);
}

}

Example: Objects Not Necessary

CSE1030 24

public class DeclareVariables
{

public static void main(String[] args)
{

int A = 10;
int B = 20;
int C = A + B;

System.out.println("The answer is: " + C);
}

}

Declare the Class

Define a Member: main()

Example: But it’s still a class

CSE1030 25

The main() Function
The main function is where execution of all java
programs begins

All classes can have a main function
Even if there are more than one class, each can
have it’s own main function
The only main function that matters is the one in the
controlling class – that is the one that will be run

The main function is labelled static, meaning that an
object is not needed to run the main function

That’s great if we don’t want the added complexity of
having objects around

CSE1030 26

Problem...
Even though we haven’t provided a
constructor in our example, Java will
automatically create one for us.

So to ensure that nobody creates an object
of a class we don’t want them to, we have
to disable the constructor by making it
private

CSE1030 27

public class DeclareVariables
{

private DeclareVariables() {};

public static void main(String[] args)
{

int A = 10;
int B = 20;
int C = A + B;

System.out.println("The answer is: " + C);
}

}

Now we have a Class, but no Objects

CSE1030 28

Characteristics of Utility Classes

Want to make this functionality available
to others

Usually Utilities are collections of useful
functions, rather than stand-alone
programs

CSE1030 29

public class AdditionUtility
{

private AdditionUtility() {};

public static int add(int A, int B)
{

return A + B;
}

}

The AdditionUtility Class

CSE1030 30

Summary: Utility Classes
Private Constructor

All members, data and code, must be
labelled static

Usually does not contain a main() function

CSE1030 31

CSE1030 – Lecture #2
Intro to Object Oriented Programming
Elements of a Java Class
Utility Classes
JavaDoc
We’re Done!

CSE1030 32

Intro to JavaDoc
How do we make it easy for other
programmers (or even ourselves) to use
our classes?

Users need to know the API

JavaDoc provides semi-automatic
generation of API documentation suitable
for viewing in a browser

CSE1030 33

/**
* This class defines a function for
* adding two numbers
*/

public class AdditionUtility
{

private AdditionUtility() {};

/**
* This function adds two numbers.
*/
public static int add(int A, int B)
{

return A + B;
}

}

JavaDoc Comments

CSE1030 34

Running javadoc

javadoc AdditionUtility.java

This command reads the Java source file
and generates the API documentation.

Several files are created, open the one
called “index.html” in your web browser

CSE1030 35

Note! This is an old-style javadoc

CSE1030 36

JavaDoc Tags…

It would be nice to include more
information regarding our function

How about, what the parameters are,
what’s the return value?

CSE1030 37

/**
* This function adds two numbers.
*
* @param A A number to add
* @param B Another Number to add
* @return The sum, A + B
*/
public static int add(int A, int B)
{

return A + B;
}

Adding Details to add()

CSE1030 38

CSE1030 39

Preconditions

Preconditions are instructions made to the
users of your function

You should always check the validity of
your function’s parameters

But if you have limits in what you can
handle, tell the user – use a precondition!

CSE1030 40

/**
* This function adds two numbers.
*
* @param A A number to add
* @param B Another Number to add
* @pre. There are no preconditions
* @return The sum, A + B
*/
public static int add(int A, int B)
{

return A + B;
}

Adding javadoc Preconditions

CSE1030 41

Preconditions in JavaDoc
Preconditions are not directly supported in this
version of javadoc

So we use a custom tag: @pre.

And we run a more complicated javadoc
command:
javadoc –tag param –tag pre.:a:"Precondition: "
–tag return AdditionUtility.java

CSE1030 42

CSE1030 43

Final JavaDoc Notes
There are other tags:

@author, @version, @see, @throws, etc.

You can use HTML tags in the comments

More information about defining your own
custom tags appears in the online javadoc
documentation:
http://docs.oracle.com/javase/1.4.2/docs/tooldocs/

windows/javadoc.html#tag

CSE1030 44

CSE1030 – Lecture #2
Intro to Object Oriented Programming
Elements of a Java Class
Utility Classes
JavaDoc
We’re Done!

CSE1030 45

Next topic…

Non-Static Object Features

