MATH/CSE 1019 Test 2

Fall 2012

Nov 5, 2012

Instructor: Jessie Zhao

- 1. (4 points) Sets. Given a set $A = \{\{\emptyset\}, \{x\}, 3\}$
 - a) (1 point) Is \emptyset a member of A?

No

b) (1 point) Is $\{x\}$ a subset of A?

No

c) (1 points) What is the powerset of A?

 $\{\emptyset, \{\{\emptyset\}\}, \{\{x\}\}, \{3\}, \{\{\emptyset\}, \{x\}\}, \{\{x\}, 3\}, \{\{\emptyset\}, 3\}, \{\{\emptyset\}, \{x\}, 3\}\}$

d) (1 points) What is the Cartesian product of A and $\{b\}$, i.e. A × $\{b\}$?

{<{Ø},b>,<{x},b>,<3,b>}

- 2. (4 points) Sequences. For each of the following lists of integers, provide a simple formula that generates the terms of an integer sequence that begins with the given list.
 - a) (2 points) 3, -6, 12, -24, 48, -96, ...

 $a_n = 3 * (-2)^{n-1}$, n=1,2,... Note: The sequence may start from either 0 or 1.

b) (2 points) 100, 94, 88, 82, 76, 70, ...

 $b_n = 100 - 6(n - 1)$, n=1,2,... Note: The sequence may start from either 0 or 1. 3. (6 points) Cardinality. Prove the following sets are countably infinite, by constructing an explicit bijective function (one-to-one correspondence) between the set of positive integers and the given set. You do not need to prove the function is bijective.

a) (3 points) the odd integers

f: $Z^+ \rightarrow$ the odd integers

f(n) = n, when n is odd = 1-n, when n is even

b) (3 points) the integers greater than a given integer k

g: $Z^+ \rightarrow$ the integers greater than a given integer k

g(n) = n+k

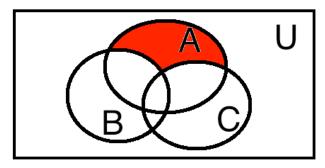
- 4. (6 points) Functions. Let f: $N \times N \rightarrow N$ be such that $f(\langle x, y \rangle) = x + y + 1$.
 - a) (3 points) Is this function surjective (onto)? Prove your answer is correct.

No. Proof by giving a counter example: $f(\langle x,y \rangle)=x+y+1$ is always greater than or equal to 1. Let z=0, then z $\in N$, and there is no $\langle x,y \rangle$ in N × N, such that $f(\langle x,y \rangle)=0$. Q.E.D.

b) (3 points) Is this function injective (one-to one)? Prove your answer is correct.

No. Proof by giving a counter example. f(<1,2>)=1+2+1=4 f(<2,1>)=2+1+1=4 $<1,2>\neq<2,1>$, and f(<1,2>)=f(<2,1>). Q.E.D.

- 5. (5 points) Sets. Let A, B, C be sets.
 - a) (1 point) Draw a Venn diagram for (A-B)-C.



The red area is (A-B)-C.

b) (4 points) Prove (without using Venn diagrams) that (A-B)-C=A-(B \cup C). (Hint: X-Y=X $\cap \overline{Y}$.)

Note: You may prove by membership table, set identity, or $\forall x(x \in ((A-B)-C) \equiv x \in (A-(B\cup C)))$.

Solution 1:

А	В	С	A-B	(A-B)-C	B∪C	A-(B∪C).
0	0	0	0	0	0	0
0	0	1	0	0	1	0
0	1	0	0	0	1	0
0	1	1	0	0	1	0
1	0	0	1	1	0	1
1	0	1	1	0	1	0
1	1	0	0	0	1	0
1	1	1	0	0	1	0

(A-B)-C and A-(B \cup C) have the same values. Q.E.D.

Solution 2:

(A-B)-C
=
$$(A \cap \overline{B}) - C = (A \cap \overline{B}) \cap \overline{C} = A \cap \overline{B} \cap \overline{C} = A \cap \overline{B} \cup \overline{C}$$
 (De Morgan)
= A- $(B \cup C)$
O.E.D.

Solution 3:

Let x be an arbitrary element.

$$x \in ((A-B)-C)$$

$$\equiv \{x \in (A-B) \land x \notin C\}$$

$$\equiv \{x \in A \land x \notin B \land x \notin C\}$$

$$\equiv \{x \in A \land x \notin (B \cup C)\}$$

$$\equiv \{x \in A-(B \cup C)\}$$

Q.E.D.

6. (5 points) Summation. Give a formula for $\sum_{i=0}^{k} \sum_{j=i}^{i+k} (3^{j})$. Show your steps. You can use the following formula.

$$\sum_{i=0}^{n} ar^{i} = \begin{cases} \frac{ar^{n+1} - a}{r-1} & \text{if } r \neq 1\\ (n+1)a & \text{if } r = 1 \end{cases}$$

Solution:

$$\begin{split} & \sum_{i=0}^{k} \sum_{j=i}^{i+k} (3^{j}) \\ &= \sum_{i=0}^{k} (\sum_{j=0}^{i+k} (3^{j}) - \sum_{j=0}^{i-1} (3^{j})) \\ &= \sum_{i=0}^{k} (\frac{3^{i+k+1}-1}{3-1} - \frac{3^{i}-1}{3-1}) \\ &= \sum_{i=0}^{k} (\frac{3^{i+k+1}-3^{i}}{2}) \\ &= \sum_{i=0}^{k} (3^{i} \times \frac{3^{k+1}-1}{2}) \\ &= \frac{3^{k+1}-1}{2} \times \sum_{i=0}^{k} 3^{i} \\ &= \frac{3^{k+1}-1}{2} \times \frac{3^{k+1}-1}{3-1} \\ &= \frac{1}{4} (3^{k+1}-1)^{2} \end{split}$$