Lens Effects

York University CSE 4431 Josh Freeman

Lens Effects in 3D renderings

To talk about lens effects in 3D renderings we must first understand how they're produced in the real world

Ebbesen, Bill. "File:Photographic lenses front view.jpg." 3 June 2010. <u>WIkipedia</u>. 23 March 2012 <<u>http://en.wikipedia.org/wiki/File:</u> <u>Photographic_lenses_front_view.jpg</u>>.

Cameras: how do they work?

- Simplest camera is the pinhole
 - Photosensitive paper placed on one side of a lightproof box
 - Each light ray that makes it through the hole maps to one point on the paper (ideally)
 - Pinhole acts as both lens and aperture
 - Infinite focal length

"How does a pinhole camera work?" 01 April 2000. HowStuffWorks.com. <<u>http://electronics.howstuffworks.</u> com/question131.htm 23 March 2012.

Cameras: how do they work?

- Separate lenses added to change the way light enters the aperture
 - Can change the field of view with different lens shapes
 - Must also deal with focus
 - Light now converges inside the box (camera body)
 - For concave lens photosensitive medium (sensor) must be at focal length
 - For convex lens subject must be at focal length
 - Bring different objects in and out of focus by changing the distance from the lens to the sensor

Lens shapes

- Allows sensor to capture different portions of the environment
- Fisheye lens
 - Compresses up to 180° onto the sensor
- Macro Lens
 - Allows actual image size (image on the sensor) to be the same size, or bigger than, the subject

Chin, Paul. "File:Fisheyetext.svg." 22 November 2010. <u>Wikipedia</u>. 23 March 2012 <<u>http://en.wikipedia.</u> org/wiki/File:Fisheye-text. svg>.

Light artifacts

- The modern camera, having multiple lenses and an adjustable aperture, produces artifacts and aberrations based on the way light bounces inside the camera
 - Chromatic aberration
 - Bokeh
 - Lens flare

Ye, Jiawei. "Bokeh." <u>toothwalker.org</u>. 24 March 2012 <http://toothwalker. org/optics/bokeh.html>.

Kartapranata, Gunawan. "File:Lens Flare at Borobudur Stairs Kala Arches.JPG." 4 February 2010. <u>Wikipedia</u>. 23 March 2012 <<u>http://en.wikipedia.org/wiki/File:</u> Lens_Flare_at_Borobudur_Stairs_Kala_Arch es.JPG>.

http://toothwalker.org/optics.html

van Walree, Paul. "Chromatic aberrations." <u>toothwalker.org</u>. 24 March 2012 <http://toothwalker. org/optics/chromatic.html>.

Computer generated images

- Everything is always in focus, projection is under total control
 - Boring!
- We introduce aberrations, artifacts, and warping for realism and artistic effect

Perspective effects

- Most basic effect is coordinate transformations
 - Changing the shape of the frustum changes the amount of geometry seen, and skews the coordinate system
 - Built into OpenGL: gluPerspective()
 - Achieve different "lens shapes" with nonlinear coordinate transformations

http://paulbourke.net/miscellaneous/lenscorrection/

Focus effects

- Depth of field can be achieved by raytracing
 - Trace multiple rays per pixel at different angles
 - Average results of samples
- Fake it for real-time applications
 - <u>http://encelo.netsons.org/2008/04/15/depth-of-field-</u> <u>reloaded/</u>
 - Render the scene into a buffer
 - Apply blur filter to the buffered image
 - Combine blurred image into final based on fragment's Z value
 - <u>http://paulbourke.net/miscellaneous/blur/</u>
 - Render scene from multiple angles
 - Overlay on top of each other

Light effects

- Lens flares could be produced using a physically-based camera model
 - Model lens system and raytrace, accounting for exposure
 - Accurately produces all effects simultaneously (perspective, focus & light)

Brian A. Barsky, Daniel R. Horn, Stanley A. Klein, Jeffrey A. Pang, Meng Yu. "Camera Models and Optical Systems Used in Computer Graphics: Part I, Object-Based Techniques." Kumar, Vipin. <u>Computational science and its</u> <u>applications, ICCSA 2003</u>. Berlin: Springer-Verlag, 2003. 246-255.

Effects with GLSL

- Perspective
 - Use vertex shader to transform coordinates

• Depth of Field

- Render into frame buffers, blur, combine
- Chromatic aberration
 - Cube-mapped geometric lens
 - Use different texture coordinates for r/g/b
 - Whole scene
 - Transform perspective differently for r/g/b, render into buffers, combine

Lens flare

Calculate where flares should be, render sprites