Appearance of Objects

- object appearance depends on three factors:
 - lighting
 - material properties
 - viewer properties
- for the most part, graphics techniques do not account for the properties of the viewer
 - example: for the synthetic camera, properties of film are not modeled
 - example: for a human observer, properties of human visual system (eye and brain) are not modeled

Human Vision

- it is useful (and interesting) to study human vision to understand the generation and appearance of computer images
- vision is the inverse problem of graphics
 - graphics: how do we describe the 3D (4D if we consider time) world to produce a 2D image?
 - vision: given a 2D image, what can we infer about the 3D/4D world?
- the eyes and brain comprise the human visual system
 - we will only study the eye

Structure of Eye (cont)

- cornea
 - clear coating over front of eye
 - two major purposes:
 - * protects internal structure
 - focusing of light (cornea is strongest focusing element in the eye)
- iris
 - colored annulus between cornea and lens
 - changes the size of the pupil to allow more or less light into the eye

Structure of the Eye (cont)

■ lens

- clear elastic focusing element
- muscles stretch and compress the lens to help focus light (elasticity diminishes with age)

retina

- thin layer of cells covering approximately 200 degrees on the back of the eye
- two types of photosensitive cells in retina:
 - * cones: sensitive to color light
 - rods: sensitive to light intensity only (not color) but 10 times more sensitive than cones

Structure of the Eye (cont)

■ fovea

- very small region of the retina with the densest collection of cone cells (147,000 cones/mm)
 - some hawks have 1,000,000 cells in the same area (can see a small animal at a distance where a human could not even see the hawk)
- visual field is centered on fovea
- rods start to appear at the edge of the fovea and increase rapidly in density away from fovea
 - night vision is often better slightly away from the center of the visual field

The Nature of Light

- light is an electromagnetic phenomenon (like radio waves, microwave, x-rays, etc)
- waves are characterized by wavelength (or frequency) usually measured in nanometers for light (10-9 meters)

Visible Spectrum

www.handprint.com/HP/WCL/color1.html

- visible spectrum approximately 400-700nm
- light does not have color
 - the sensation of color is perceived
- color perception starts with cone cells

Tristimulus Theory

 3 different cone cells respond to certain regions of the visible spectrum

Tristimulus Theory (cont)

- only have 3 (?) different types of cone cells
 - this suggests that a properly blended combination of three different colors can reproduce any color light we perceive
 - mantis shrimp has 10 different color receptors
- \blacksquare a good choice of colors is red, green, and blue
- if you take a red, green, and blue light can you match any color light?

•
$$C = rR + gG + bB$$
 ?

Tristimulus Theory (cont)

- many target color lights cannot be matched
 - what if we add red light to the target light?
 - $\mathbf{F} C + rR = gG + bB$
 - this works!

 mathematically same as adding a negative amount of red light

C = -rR + gG + bB

■ picture of color-matching functions r, g, b in Hill Figure 12.6

CIE Color Matching Functions

- Commission Internationale de L'Eclairage (CIE) defined the standard observer (1931)
- invented three primary color lights (X, Y, and Z) that when added in positive amounts can match any perceivable color light

$$\bullet C = xX + yY + zZ$$

Hill Figure 12.8

CIE Chromaticity Diagram

- coefficients x, y, z define a 3D color space
- a 2D slice of this space yields the CIE chromaticity diagram (Hill Figure 12.10)

viz.cac.psu.edu/sem_notes/color_2d/html/working_with_color.html

RGB Color Space

- most common color space in graphics is red-greenblue (RGB) color space
 - reason: easy to display on color monitors (which use red, green, and blue phosphors)
- $\blacksquare C = rR + gG + bB \text{ where}$

 $0\leq r\leq 1, \quad 0\leq g\leq 1, \quad 0\leq b\leq 1$

■ additive color space

C cyan Y yellow M magenta W white

RGB Color Space (cont)

■ some rgb values for colors

color	r	g	b	color	r	g	b
black	0	0	0	cyan	0	1	1
white	1	1	1	magenta	1	0	1
gray	0.5	0.5	0.5	orange	1	0.65	0
red	1	0	0	navy	0	0	0.5
green	0	1	0	sky blue	0.53	0.81	0.98
blue	0	0	1	khaki	0.94	0.90	0.55
yellow	1	1	0	maroon	0.69	0.19	0.38

■ note that this is not an intuitive color space!

CMY and CMYK Color Spaces

- most common printer color spaces are cyanmagenta-yellow (CMY) and CMYK (CMY plus black)
- C, M, Y, and K are not lights but filters of light

◆ cyan	filters out	red
 magenta 	filters out	green
 yellow 	filters out	blue

• (c, m, y) = (1, 1, 1) - (r, g, b)

■ subtractive color space

 start with white light and subtract red, green, and blue light using cyan, magenta, and yellow filters

CMY and CMYK Color Spaces (cont)

- your printer deposits tiny dots of transparent cyan, magenta, and yellow ink
 - each of these dots acts like a filter
 - printed images only look correct if printed on white paper and illuminated with white light
- equal amounts of cyan, magenta, and yellow can be replaced with black
 - conserves the more expensive color inks

$$\mathbf{k} = \min(\mathbf{c}, \mathbf{m}, \mathbf{y})$$

$$\bigstar(c - k, m - k, y - k, k)$$

HSV Color Space

■ hue, saturation, value (HSV) is a more intuitive color space than RGB

■ hue

the different color sensations
red, green, and blue are different hues
saturation

purity of color or how far from gray a color is
red is fully saturated (saturation = 1)
pink is less saturated (saturation < 1)
white is zero saturation (saturation = 0)
no mixture of three primaries is fully saturated

HSV Color Space (cont)

■ value

- the sensation of light and dark colors
- white has a value of 1 and black has a value of 0

easier for a human to choose colors

- pick the color family (red, green, yellow, etc)
- pick the purity or strength of the color
- pick the lightness of the color

HSV Color Space (cont)

hue is measured in degrees around the circleforms a hexcone in space

Color in OpenGL

- OpenGL only supports RGB and RGBA
 we'll study RGBA a little later
- whenever an object is drawn, it is drawn with the current color
 - set color, draw, set color, draw, etc
- specify colors using
 - void glColor3f(float red, float green, float blue)
- sets the current color to (red, green, blue) where the values of red, green, and blue are clamped to between 0.0f and 1.0f

Color in OpenGL (cont)

■ can set the color per vertex

```
    OpenGL will interpolate color between vertices

glBegin(GL QUADS);
 glColor3f( 1.0f, 0.0f, 0.0f ); // red
 alVertex2f( 0.0f, 1.0f );
 alVertex2f( 0.0f, 0.0f );
 alColor3f( 0.0f, 0.0f, 1.0f ); // blue
 alVertex2f( 1.0f, 0.0f );
 alVertex2f( 1.0f, 1.0f );
glEnd();
```


Interaction of Light With Matter

- interaction of light with matter is generally not well understood
- a simplified approach is the bidirectional reflection distribution function (BRDF)
 - an even simpler approach is taken by traditional computer graphics (we'll study this shortly)
- BRDF assumes that light striking a point on the surface leaves the surface from the same point
 - idea: for *every* direction incident on a point, measure the amount of light leaving the point in *every* direction

BRDF

the BRDF is often written as R(λ, φ_i, θ_i, φ_v, θ_v)
 λ is the wavelength (hue) of incident light
 (φi, θi) defines the direction to the light source L
 (φv, θv) defines the direction to the viewer V
 the BRDF tells us about the ratio of the incoming and reflected light L

BRDF (cont)

- for real materials BRDF is usually very complex
 - need lots of samples from a BRDF to accurately model a surface
 - from "3D Computer Graphics" by Alan Watt

need simpler models for most graphics applications

Phong Reflection Model

- most common model in computer graphics
- Hill uses "shading model" which is confusing
- model not based on physical principles
 - but looks good for plastic-like surfaces
- aside:
 - physically-based illumination models
 - Cook-Torrance (see Hill)
 - He (SIGGRAPH'91)
 - Oren and Nayar (SIGGRAPH'94)

Phong Reflection Model

■ total light intensity at a surface is sum of three components:

$$\begin{split} I_{total} &= I_{amb} + I_{diff} + I_{spec} \\ I_{amb} & ambient intensity \\ I_{diff} & diffuse intensity \\ I_{spec} & specular intensity \end{split}$$

Reflected Ambient Intensity

- why can you see the bottom of things when light comes from above? why are shadows not absolute black?
 - because light is reflected from other surfaces
 called global illumination
- global illumination is very difficult to model accurately
- ambient intensity is crude approximation of effect of global illumination

Reflected Ambient Intensity (cont)

- assume ambient intensity is constant
- depends on:
 - amount of ambient illumination I * property of light source ρ_{a}
 - material property
 - property of object

called ambient reflection coefficient

- $\square \rho_{\alpha}$ is fraction of ambient intensity reflected by surface
 - $0 \le \rho_a \le 1$
- yields the reflected ambient intensity $I_{amb} = I_a * \rho_a$

Reflected Ambient Intensity (cont)

 picture of spheres lit with ambient light only
 ambient reflection coefficient increases from left to right

makes objects look flat

Reflected Diffuse Intensity

- a diffuse reflector reflects incident light equally in all directions
- obey Lambert's Law:
 - reflected intensity proportional to $\cos(\theta)$

independent of where the viewer is
 reflected intensity is the same in all directions

Reflected Diffuse Intensity (cont)

- depends on:
 - light source intensity I_s
 property of light source(s)
 - material property ρ_d
 - property of object

called diffuse reflection coefficient

- ρ_d is fraction of diffuse intensity reflected by surface
 - $0 \le \rho_d \le 1$
- yields the reflected diffuse intensity

$$I_{diff} = I_s * \rho_d * lambert$$

Reflected Diffuse Intensity (cont)

- examples of mostly diffuse surfaces:
 - roughened plastic, chalk, writing paper
- picture of spheres lit with diffuse intensity only
 - diffuse reflection coefficient increases from left to right

provides information about shape

Reflected Specular Intensity

- specular intensity models shininess
 results in highlights
- most of incident intensity reflected in mirror direction
 - but some is reflected around the mirror direction
- Phong approximation is pure hack
 - reflected intensity proportional to $\cos^{f}(\phi)$

Reflected Specular Intensity (cont)

how do we compute the mirror direction?
 mirror direction

$$\vec{r} = -\vec{s} + 2\frac{\vec{s}\cdot\vec{n}}{\left|\vec{n}\right|^2}\vec{n}$$

mirror direction is a bit expensive to compute

 we can use the angle β between the normal vector and the halfway vector instead

Reflected Specular Intensity (cont)

- depends on:
 - light source intensity I_s
 - * property of light source(s)
 - two material properties
 - * specular reflection coefficient ρ_s
 - * ρ_s is fraction of specular intensity reflected by surface
 - $0 \le \rho_s \le 1$
 - ♦ specular reflection exponent f
 - + f controls how fast the highlight decreases
 - * big highlight $1 \le f \le 200$ small highlight

Reflected Specular Intensity (cont) using the mirror direction we get: phong = max $(0, \cos(\phi))$ = max $\left(0, \frac{\vec{r} \cdot \vec{v}}{|\vec{r}||\vec{v}|}\right)$ using the halfway vector we get: phong = max $(0, \cos(\beta)) = \max\left(0, \frac{\vec{h} \cdot \vec{n}}{|\vec{h}||\vec{n}|}\right)$

• yields the reflected specular intensity $I_{spec} = I_s * \rho_s * phong^f$

Reflected Specular Intensity (cont)

- examples of specular surfaces
 - smooth metal, smooth glass, smooth plastics
- specular reflection coefficient increases left to right

■ specular exponent decreases left to right

Putting It All Together

■ the total reflected intensity is

$$\begin{split} I_{\text{total}} &= I_{\text{amb}} + I_{\text{diff}} + I_{\text{spec}} \\ &= I_{\text{a}} * \rho_{\text{a}} + I_{\text{s}} * \rho_{\text{d}} * \text{lambert} + I_{\text{s}} * \rho_{\text{s}} * \text{phong}^{\text{f}} \end{split}$$

- Hill writes I_{total} a little differently $I_{total} = I_a * \rho_a + I_d * \rho_d * lambert + I_{sp} * \rho_s * phong^f$
- I_d is the diffuse intensity of the light source
 I_{sp} is the specular intensity of the light source

Putting It All Together (cont)

■ picture of spheres lit with Phong model

Adding Color

■ to add color

- source intensities are in (r, g, b)
- ◆ all reflection coefficients are in (r, g, b)
 ◆ curiously, f is a constant (not in (r, g, b))
 I_{total,r} = I_{a,r} * ρ_{a,r} + I_{d,r} * ρ_{d,r}*lambert + I_{sp,r} * ρ_{s,r}*phong^f
 I_{total,g} = I_{a,g} * ρ_{a,g} + I_{d,g} * ρ_{d,g}*lambert + I_{sp,g} * ρ_{s,g}*phong^f
 I_{total,b} = I_{a,b} * ρ_{a,b} + I_{d,b} * ρ_{d,b}*lambert + I_{sp,b} * ρ_{s,b}*phong^f
- notice that it is possible for $I_{total} > 1$
 - \bullet usually I_{total} is clamped to the range [0, 1]
- if there are multiple lights, we compute I_{total} for each light and add up all of the contributions