Appearance of Objects

■ object appearance depends on three factors:

- lighting
material properties
- viewer properties

■ for the most part, graphics techniques do not account for the properties of the viewer
example: for the synthetic camera, properties of film are not modeled
example: for a human observer, properties of human visual system (eye and brain) are not modeled

Human Vision

■ it is useful (and interesting) to study human vision to understand the generation and appearance of computer images
■ vision is the inverse problem of graphics

- graphics: how do we describe the 3D (4D if we consider time) world to produce a 2 D image?
- vision: given a 2D image, what can we infer about the 3D/4D world?
\square the eyes and brain comprise the human visual system
- we will only study the eye

Structure of the Eye

Structure of Eye (cont)

■ cornea
-clear coating over front of eye

- two major purposes:
\rightarrow protects internal structure
\rightarrow focusing of light (cornea is strongest focusing element in the eye)
■ iris
- colored annulus between cornea and lens
- changes the size of the pupil to allow more or less light into the eye

Structure of the Eye (cont)

■ lens

- clear elastic focusing element
- muscles stretch and compress the lens to help focus light (elasticity diminishes with age)
■ retina
thin layer of cells covering approximately 200 degrees on the back of the eye
- two types of photosensitive cells in retina:
\rightarrow cones: sensitive to color light
- rods: sensitive to light intensity only (not color) but 10 times more sensitive than cones

Structure of the Eye (cont)

■ fovea

- very small region of the retina with the densest collection of cone cells (147,000 cones $/ \mathrm{mm}$)
\rightarrow some hawks have 1,000,000 cells in the same area (can see a small animal at a distance where a human could not even see the hawk)
- visual field is centered on fovea
- rods start to appear at the edge of the fovea and increase rapidly in density away from fovea
\rightarrow night vision is often better slightly away from the center of the visual field

The Nature of Light

■ light is an electromagnetic phenomenon (like radio waves, microwave, x-rays, etc)
■ waves are characterized by wavelength (or frequency) usually measured in nanometers for light (10^{-9} meters)
frequency in Hz \qquad

Visible Spectrum

www.handprint.com/HP/WCL/color1.html

■ visible spectrum approximately $400-700 \mathrm{~nm}$
■ light does not have color the sensation of color is perceived

- color perception starts with cone cells

Tristimulus Theory

■ 3 different cone cells respond to certain regions of the visible spectrum

Tristimulus Theory (cont)

■ only have 3 (?) different types of cone cells

- this suggests that a properly blended combination of three different colors can reproduce any color light we perceive
- mantis shrimp has 10 different color receptors
- a good choice of colors is red, green, and blue

■ if you take a red, green, and blue light can you match any color light?

$$
\mathrm{C}=\mathrm{rR}+\mathrm{gG}+\mathrm{bB} ?
$$

Tristimulus Theory (cont)

■ many target color lights cannot be matched

- what if we add red light to the target light?

$$
\leftrightarrow \mathrm{C}+\mathrm{rR}=\mathrm{gG}+\mathrm{bB}
$$

- this works!
- mathematically same as adding a negative amount of red light

$$
+\mathrm{C}=-\mathrm{rR}+\mathrm{gG}+\mathrm{bB}
$$

- picture of color-matching functions $\mathrm{r}, \mathrm{g}, \mathrm{b}$ in Hill Figure 12.6

CIE Color Matching Functions

■ Commission Internationale de L'Eclairage (CIE) defined the standard observer (1931)
$■$ invented three primary color lights (X, Y, and Z) that when added in positive amounts can match any perceivable color light

- $\mathrm{C}=\mathrm{xX}+\mathrm{yY}+\mathrm{zZ}$
- Hill Figure 12.8

CIE Chromaticity Diagram

\square coefficients $\mathrm{x}, \mathrm{y}, \mathrm{z}$ define a 3D color space
■ a 2D slice of this space yields the CIE chromaticity diagram (Hill Figure 12.10)

viz.cac.psu.edu/sem_notes/color_2d/html/working_with_color.html

RGB Color Space

\square most common color space in graphics is red-greenblue (RGB) color space

- reason: easy to display on color monitors (which use red, green, and blue phosphors)
■ $\mathrm{C}=\mathrm{rR}+\mathrm{gG}+\mathrm{bB}$ where

$$
0 \leq \mathrm{r} \leq 1, \quad 0 \leq \mathrm{g} \leq 1, \quad 0 \leq \mathrm{b} \leq 1
$$

■ additive color space

> C cyan
> Y yellow
> M magenta
> W white

RGB Color Space (cont)

■ in 3D r, g, b form a color cube

RGB Color Space (cont)

■ some rgb values for colors

color	r	g	b	color	r	g	b
black	0	0	0	cyan	0	1	1
white	1	1	1	magenta	1	0	1
gray	0.5	0.5	0.5	orange	1	0.65	0
red	1	0	0	navy	0	0	0.5
green	0	1	0	sky blue	0.53	0.81	0.98
blue	0	0	1	khaki	0.94	0.90	0.55
yellow	1	1	0	maroon	0.69	0.19	0.38

■ note that this is not an intuitive color space!

CMY and CMYK Color Spaces

■ most common printer color spaces are cyan-magenta-yellow (CMY) and CMYK (CMY plus black)
■ C, M, Y, and K are not lights but filters of light

- cyan
- magenta filters out green
- yellow filters out blue
- $(\mathrm{c}, \mathrm{m}, \mathrm{y})=(1,1,1)-(\mathrm{r}, \mathrm{g}, \mathrm{b})$

■ subtractive color space

- start with white light and subtract red, green, and blue light using cyan, magenta, and yellow filters

CMY and CMYK Color Spaces (cont)

■ your printer deposits tiny dots of transparent cyan, magenta, and yellow ink

- each of these dots acts like a filter
- printed images only look correct if printed on white paper and illuminated with white light
■ equal amounts of cyan, magenta, and yellow can be replaced with black
- conserves the more expensive color inks
$\rightarrow \mathrm{k}=\min (\mathrm{c}, \mathrm{m}, \mathrm{y})$
$\rightarrow(\mathrm{c}-\mathrm{k}, \mathrm{m}-\mathrm{k}, \mathrm{y}-\mathrm{k}, \mathrm{k})$

CMY and CMYK Color Spaces (cont)

■ in 3D c, m, y form a color cube

HSV Color Space

■ hue, saturation, value (HSV) is a more intuitive color space than RGB
■ hue

- the different color sensations
\rightarrow red, green, and blue are different hues
- saturation
purity of color or how far from gray a color is
\rightarrow red is fully saturated (saturation $=1$)
\rightarrow pink is less saturated (saturation <1)
\rightarrow white is zero saturation (saturation $=0$)
- no mixture of three primaries is fully saturated

HSV Color Space (cont)

■ value

- the sensation of light and dark colors
- white has a value of 1 and black has a value of 0

■ easier for a human to choose colors

- pick the color family (red, green, yellow, etc)
Δ pick the purity or strength of the color
pick the lightness of the color

HSV Color Space (cont)

\square hue is measured in degrees around the circle
■ forms a hexcone in space

Color in OpenGL

■ OpenGL only supports RGB and RGBA

- we'll study RGBA a little later

■ whenever an object is drawn, it is drawn with the current color

- set color, draw, set color, draw, etc
- specify colors using
void glColor3f(float red, float green, float blue)
■ sets the current color to (red, green, blue) where the values of red, green, and blue are clamped to between 0.0 f and 1.0 f

Color in OpenGL (cont)

■ can set the color per vertex
\bullet OpenGL will interpolate color between vertices gIBegin(GL_QUADS); glColor3f(1.0f, 0.0f, 0.0f); // red glVertex2f(0.0f, 1.0f); gIVertex2f(0.0f, 0.0f); glColor3f(0.0f, 0.0f, 1.0f); // blue gIVertex2f(1.0f, 0.0f); gIVertex2f(1.0f, 1.0f); gIEnd();
red

Interaction of Light With Matter

\square interaction of light with matter is generally not well understood

■ a simplified approach is the bidirectional reflection distribution function (BRDF)

- an even simpler approach is taken by traditional computer graphics (we'll study this shortly)
■ BRDF assumes that light striking a point on the surface leaves the surface from the same point
- idea: for every direction incident on a point, measure the amount of light leaving the point in every direction

BRDF

- the BRDF is often written as $R\left(\lambda, \phi_{i}, \theta_{i}, \phi_{v}, \theta_{v}\right)$
$\Delta \lambda$ is the wavelength (hue) of incident light
- $(\phi i, \theta \mathrm{i})$ defines the direction to the light source L
$-(\phi \mathrm{v}, \theta \mathrm{v})$ defines the direction to the viewer V
■ the BRDF tells us about the ratio of the incoming and reflected light

BRDF (cont)

■ for real materials BRDF is usually very complex

- need lots of samples from a BRDF to accurately model a surface
- from "3D Computer Graphics" by Alan Watt

■ need simpler models for most graphics applications

Phong Reflection Model

- most common model in computer graphics

■ Hill uses "shading model" which is confusing

- model not based on physical principles
but looks good for plastic-like surfaces
■ aside:
- physically-based illumination models
- Cook-Torrance (see Hill)
- He (SIGGRAPH’91)
- Oren and Nayar (SIGGRAPH'94)

Phong Reflection Model

■ total light intensity at a surface is sum of three components:

$$
\begin{array}{cl}
\mathrm{I}_{\text {total }}=\mathrm{I}_{\text {amb }}+\mathrm{I}_{\text {diff }}+\mathrm{I}_{\text {spec }} \\
\mathrm{I}_{\text {amb }} & \text { ambient intensity } \\
\mathrm{I}_{\text {diff }} & \text { diffuse intensity } \\
\mathrm{I}_{\text {spec }} & \text { specular intensity }
\end{array}
$$

Reflected Ambient Intensity

■ why can you see the bottom of things when light comes from above? why are shadows not absolute black?

- because light is reflected from other surfaces
- called global illumination
- global illumination is very difficult to model accurately
- ambient intensity is crude approximation of effect of global illumination

Reflected Ambient Intensity (cont)

■ assume ambient intensity is constant

- depends on:
Δ amount of ambient illumination I_{a}
- property of light source
- material property
ρ_{a}
\rightarrow property of object
- called ambient reflection coefficient
- ρ_{a} is fraction of ambient intensity reflected by surface
$-0 \leq \rho_{\mathrm{a}} \leq 1$
\square yields the reflected ambient intensity $I_{a m b}=I_{a}{ }^{*} \rho_{a}$

Reflected Ambient Intensity (cont)

- picture of spheres lit with ambient light only
- ambient reflection coefficient increases from left to right

■ makes objects look flat

Reflected Diffuse Intensity

■ a diffuse reflector reflects incident light equally in all directions
■ obey Lambert's Law:

- reflected intensity proportional to $\cos (\theta)$

\square independent of where the viewer is
- reflected intensity is the same in all directions

Reflected Diffuse Intensity (cont)

- depends on:
\bullet light source intensity I_{s}
- property of light source(s)
- material property
\rightarrow property of object
- called diffuse reflection coefficient
- ρ_{d} is fraction of diffuse intensity reflected by surface
$-0 \leq \rho_{\mathrm{d}} \leq 1$
\square yields the reflected diffuse intensity

$$
\mathrm{I}_{\mathrm{diff}}=\mathrm{I}_{\mathrm{s}} * \rho_{\mathrm{d}} * \text { lambert }
$$

Reflected Diffuse Intensity (cont)

■ examples of mostly diffuse surfaces:

- roughened plastic, chalk, writing paper
- picture of spheres lit with diffuse intensity only
diffuse reflection coefficient increases from left to right

■ provides information about shape

Reflected Specular Intensity

- specular intensity models shininess
- results in highlights
- most of incident intensity reflected in mirror direction
- but some is reflected around the mirror direction
- Phong approximation is pure hack
Δ reflected intensity proportional to $\cos ^{\mathrm{f}}(\varphi)$

Reflected Specular Intensity (cont)

■ how do we compute the mirror direction?

- mirror direction

$$
\vec{r}=-\vec{s}+2 \frac{\vec{s} \cdot \vec{n}}{|\vec{n}|^{2}} \vec{n}
$$

\square mirror direction is a bit expensive to compute

- we can use the angle β between the normal vector and the halfway vector instead

Reflected Specular Intensity (cont)

- depends on:
\bullet light source intensity I_{s}
- property of light source(s)
\rightarrow two material properties
\leftrightarrow specular reflection coefficient $\rho_{\text {s }}$
$\leftrightarrow \rho_{\mathrm{s}}$ is fraction of specular intensity reflected by surface
- $0 \leq \rho_{\mathrm{s}} \leq 1$
- specular reflection exponent f
- f controls how fast the highlight decreases
\rightarrow big highlight $1 \leq \mathrm{f} \leq 200$ small highlight

Reflected Specular Intensity (cont)

■ using the mirror direction we get:

$$
\text { phong }=\max (0, \cos (\phi))=\max \left(0, \frac{\vec{r} \cdot \vec{v}}{|\vec{r}| \vec{v} \mid}\right)
$$

■ using the halfway vector we get:

$$
\text { phong }=\max (0, \cos (\beta))=\max \left(0, \frac{\vec{h} \cdot \vec{n}}{|\vec{h}| \vec{n} \mid}\right)
$$

■ yields the reflected specular intensity

$$
I_{\text {spec }}=I_{s} * \rho_{\mathrm{s}} * \text { phong }^{\mathrm{f}}
$$

Reflected Specular Intensity (cont)

- examples of specular surfaces
- smooth metal, smooth glass, smooth plastics
- specular reflection coefficient increases left to right

- specular exponent decreases left to right

Putting It All Together

- the total reflected intensity is

$$
\begin{aligned}
\mathrm{I}_{\text {total }} & =\mathrm{I}_{\text {amb }}+\mathrm{I}_{\text {diff }}+\mathrm{I}_{\text {spec }} \\
& =\mathrm{I}_{\mathrm{a}} * \rho_{\mathrm{a}}+\mathrm{I}_{\mathrm{s}} * \rho_{\mathrm{d}} * \text { lambert }+\mathrm{I}_{\mathrm{s}} * \rho_{\mathrm{s}}^{*} * \text { phong }^{\mathrm{f}}
\end{aligned}
$$

■ Hill writes $\mathrm{I}_{\text {total }}$ a little differently

$$
I_{\text {total }}=I_{a} * \rho_{\mathrm{a}}+I_{d} * \rho_{\mathrm{d}} * \text { lambert }+\mathrm{I}_{\mathrm{sp}} * \rho_{\mathrm{s}} * \text { phong }^{\mathrm{f}}
$$

■ I_{d} is the diffuse intensity of the light source
■ $I_{\text {sp }}$ is the specular intensity of the light source

Putting It All Together (cont)

■ picture of spheres lit with Phong model

Adding Color

■ to add color

- source intensities are in (r, g, b)
all reflection coefficients are in (r, g, b)
\rightarrow curiously, f is a constant (not in ($\mathrm{r}, \mathrm{g}, \mathrm{b}$))
■ $\mathrm{I}_{\text {total, }}=\mathrm{I}_{\mathrm{a}, \mathrm{r}} * \rho_{\mathrm{a}, \mathrm{r}}+\mathrm{I}_{\mathrm{d}, \mathrm{r}} * \rho_{\mathrm{d}, \mathrm{r}} *$ lambert $+\mathrm{I}_{\mathrm{sp}, \mathrm{r}} * \rho_{\mathrm{s}, \mathrm{r}}{ }^{*}$ phong ${ }^{\mathrm{f}}$
- $\mathrm{I}_{\mathrm{totata,g}}=\mathrm{I}_{\mathrm{a}, \mathrm{g}} * \rho_{\mathrm{a}, \mathrm{g}}+\mathrm{I}_{\mathrm{d}, \mathrm{g}} * \rho_{\mathrm{d}, \mathrm{g}} *$ lambert $+\mathrm{I}_{\mathrm{sp}, \mathrm{g}} * \rho_{\mathrm{s}, \mathrm{g}} *$ phong $^{\mathrm{f}}$
- $\mathrm{I}_{\text {total, } \mathrm{b}}=\mathrm{I}_{\mathrm{a}, \mathrm{b}} * \rho_{\mathrm{a}, \mathrm{b}}+\mathrm{I}_{\mathrm{d}, \mathrm{b}} * \rho_{\mathrm{d}, \mathrm{b}} *$ lambert $+\mathrm{I}_{\mathrm{sp}, \mathrm{b}} * \rho_{\mathrm{s}, \mathrm{b}} *{ }^{*}$ phong $^{\mathrm{f}}$
- notice that it is possible for $\mathrm{I}_{\text {total }}>1$
- usually $\mathrm{I}_{\text {total }}$ is clamped to the range $[0,1]$

■ if there are multiple lights, we compute $\mathrm{I}_{\text {total }}$ for each light and add up all of the contributions

