CISC454B: Computer Graphics

B computer graphics is concerned with producing pictures with a
computer

this is a very broad definition...
m we are interested in three-dimensional computer graphics
topics:
+ rendering pipeline
+ mathematical foundations
+ representation of 3D objects
+ camera analogy
+ human vision (brief) and color
+ lighting, material properties, shading
+ rasterization
+ particle systems
+ other topics

Administrative Information

m instructor: Burton Ma
m office hours: 2:30-3:30pm Mon-Thurs  Goodwin 735
B course web site

www.cs.queensu.ca/home/mab/454.html

still under construction

m text books (not required)
Computer Graphics Using OpenGL, 2"d Edition
OpenGL Programming Guide, 3™ Edition
The C++ Programming Language, Special Edition
m class notes
available online in PDF format
generally not complete (examples will be missing)




Administrative Information (cont)

B programming facilities
Walter Light Hall CASLAB
24 Sun Ultra 10 workstations

C++, OpenGL
B marking
do whatever you want for 100 marks (must write first
midterm)
+ assignments 8 x 6%
+ midterms 2x15%
+ write a lecture 1x10%
+ final exam no more than 50%

Administrative Information (cont)

W assignments
written and programming
can work in groups (up to 3 people per group)
no extensions for any reason
+ don’t leave them to the last minute
B midterms
in class
+ Thursday, February 1
+ Thursday, March 15
must write first midterm
closed book




Administrative Information (cont)

m write a lecture
produce a lecture based on a research paper
can work with one other person
due before last week of class

B cxam

notes and textbook permitted

B comments
don’t let math intimidate you
don’t let C++ intimidate you
a lot of work
+ budget your time wisely

Rendering Pipeline

m rendering modeled as pipeline process

B primitives go in one end, move from stage to stage, and come
out at the other end

m pipeline speed determined by slowest stage

each stage also a pipeline or parallel pipelines
B cach stage may discard primitives for efficiency

Application |[=>| Geometry |=>| Rasterizer




Application Stage

m application software e.g. video game, computer assisted design
(CAD)

any application program that needs to send output to the
screen

Application Stage (cont)

m defines:
geometry to draw (points, lines, polygons, and others)
material properties
lighting
viewing or camera parameters
m also performs other tasks:
user interaction (Hill 1.5 for examples of input devices)
animation
collision detection
speed-up techniques
many others
B output is scene to be drawn




Geometry Stage

m performs most per-polygon and per-vertex operations
m implemented in software or hardware
m Hill calls this stage the graphics pipeline (Figures 5.52, 8.18)

Model/View ™ L . Screen
Transfomm —>| Lighting |[—>| Projection |—>| Clippng |—> Mapping

B output is transformed geometry, colour and texture information

Rasterizer Stage

B rasterizes geometry
fills in pixels with correct colour to produce final image
B raster image is an array of picture elements (pixels)

example:
also see Hill 1.3-1.4




Rasterizer Stage (cont)

m implemented in hardware
m performs:
hidden surface removal
texturing
compositing
stenciling
accumulation

B output is image on screen

Summary

m application stage
what to draw and how to draw it
B geometry stage

computes 3D appearance of scene from viewer/camera point
of view

W rasterizer stage

draws 2D screen image




Mathematics for Computer Graphics

B in this course we rely mostly on simple linear algebra

more advanced graphics techniques also rely on calculus,
statistics, numerical methods
m most of polygon-based computer graphics uses vectors and
points defined in 3-dimensional real Cartesian space

B most common family of transformations represented by 4x4
matrix

Vectors

m R3is the 3-dimensional real Euclidean space

m vector in R3 is a 3-tuple of real numbers

(VO,VI,VZ Vv:(l, 1,—1)




Drawing Vectors

m vector has magnitude and direction
but no location

head
«
/ <

/ /

tail

vector equivalent vectors

Vector Operations

m formally only 2 operations
m vector-vector addition

-
v
W=u+V
u, +v,
=l u, +v i W
u, +v,

m scalar-vector multiplication

av,

. -V v
av =| av, - -

av,




Vector Properties

(ab)ii = a(bii)
(a+b)ii =aii +bii
a(ii +V) = aii + av

li =1

associative
commutative
zero identity
additive inverse
associative
distributive

distributive

multiplicative identity

Dot Product
m Hill4.3

m in Euclidean space dot product (inner product) is defined

B properties

a-b=b-i
(@G+¢)-b=d-b+¢-b
(s@)-b=s(d-b)
b =55

symmetry

linearity

homogeneity

magnitude




Dot Product (cont)

m angle between two vectors (Hill 4.3.2)
b-¢=|b||¢|cos(d)

A

B two vectors are
perpendicular (orthogonal) if 5-¢ =0

S
(o)}

m two vectors are parallel if

ell

S

m what can you say about two vectors if their dot product is
negative?

¢
=1 —_—

b

- -

Vector Norm

m norm or magnitude of vector defined as
- - = 2 2 2
\d|=~d-d=+la, +a +a,
example

B0 —4]|=3+0"+(4) =5

m in Euclidean space gives us notion of length or distance
B a unit vector has norm of 1

important!

to normalize a vector divide by its norm

example: normalize [3 0 -4]T

B0 -4 106 0 _osT




Basis

m in R3 a basis is a set of 3 non-parallel vectors
B common to use orthonormal basis
basis vectors are mutually orthogonal
basis vectors have unit magnitude
m basis most students are familiar with

i=[1 o of
j=[o 1 of
k=[0 o 1]
i-j=i-k=jk=0
i|=|j=lk|=1

Direction (cont)

B can write any vector as a linear combination of basis vectors

-3
2 |=-37+2j+7k
7




Cross Product

m Hill4.4
m only defined in R3
defined in terms of standard basis

axb = [ax a, az]T x[bx b, bz]T
(a,b.—ab)i +
=(a.b,—ab.)j+
(a,b,—a,b, )k

c

Cross Product (cont)

m cross product of two vectors is a vector that is orthogonal to the
original two vectors

direction given by right hand rule

b a
dxb
(in to page)
d b
dxb

(out of page)




Cross Product (cont)

B properties

dxb=-bxa antisymmetry
ax(b+¢)=daxb+ax¢ linearity
(sd)xb =s(axb) homogeneity
ixj=k
Ixk =i
kxi=j

Points

B a point represents location (has zero size)

B to move between points use a vector

0

. O=P+v
=V+P
P
m 1 operation defined with points

point-point subtraction (yields a vector)
Q-P=v

m in Euclidean space distance between two points defined as

distance(P,Q) =/(P- Q) (P-Q)




Why Only One Operation?

® why can we not add points?
not independent of coordinate frame

cannot multiply points by scalar for same reason
m but affine sum of points is legal (Hill 4.5.2)

Frames

B very important in computer graphics
you’ve probably been using them since high school
m a frame is a basis and a point called the origin
m most students should be familiar with the standard basis in
Cartesian space

o=[0 o o]
i=[1 0o of
j=[0 1 of
k=[0 o 1]
[ j=T-k=jk=0
i|=|j=lk|=1




Homogeneous Representation
m points and vectors are different objects but they look the same

P=|[x y Z]T V=[x y Z]T

m homogeneous representation of points and vectors distinguishes
between points and vectors

— N e X
<l
I

S N e %

Homogeneous Representation (cont)

m the difference becomes clear when we consider the frame

X
K = T y s = T
P=li j k O =xi +y+zk+0
z
1_
o
s=li 7k o] |=xi+ij+ik
z
O_

W notice that

vector = linear combination of vectors
point = vector + point




Homogeneous Representation (cont)

B to go from ordinary to homogeneous coordinates
if the object is a point, append a 1
if the object is a vector, append a 0
m to go from homogeneous to ordinary coordinates
if the object is a point, delete the 1
+ this rule will change later on
if the object is a vector, delete the 0

Points in OpenGL

m OpenGL represents a point with a set of floating-point numbers
called a vertex

m to draw a group of points use

GLfloat x0, y0, z0, x1, y1, z1, xn, yn, zn;

/[ assign values to x0, y0, z0, etc. here

...

glBegin(GL_POINTS);

glVertex3f(x0, y0, z0);  // point with coordinates (x0, y0, z0)
glVertex3f(x1, y1, z1);

/l'and so on...

glVertex3f(xn, yn, zn);

glEnd();

m cvery call to glVertex() sends a vertex down the geometry stage




Points in OpenGL (cont)

B many versions of glVertex()
void glVertex3f(...)

m number (here 3) indicates number of coordinates
canbe 2,3, o0r4

m letter (here f) indicates data type

can be
+5s GLshort
+1 GLint
+f GLfloat
+d GLdouble
B cxamples:

glVertex2i(3, 4);
glVertex3f(-1.0f, 2.0f, 3.5f);
glVertex4d(1.2, 4.5, 3.9, 1.0);

Points in OpenGL (cont)

m glVertex() can also take an array as an argument

add a “v” to the function name

example:
GLintone pt[3]={1,2,3};
GLdouble two_pts[6];
two_pts[0] = 1.0; two_pts[1] = 2.0; two_pts[2] = 3.0;
two_pts[3] = 3.0; two_pts[4] = 2.0; two_pts[5] = 1.0;
glBegin(GL_POINTS);
glVertex3iv(one_pt);
glVertex3dv(two_pts); /I point (1.0, 2.0, 3.0)
glVertex3dv(two_pts+3); // point (3.0, 2.0, 1.0)
glEnd();




Matrices
m only need 3x3 and 4x4 matrices
My, My Mg,
M=\m, m;, m, M =

My, My My,

m identity matrix

1 0 0 O
1 0 0
01 00
/=0 1 0 =
0010
0 0 1
0 0 0 1

Matrix Vector Multiplication
m can postmultiply a matrix with a column vector
Moy My My, || X Mg X + My, Y+ My Z

my my My, || Y|=|mX+m,y+m,z

My My My, || Z My X+ My y+myz




Matrix Multiplication

m can multiply two 3x3 or two 4x4 matrices together
just treat second matrix like 3 or 4 vectors

Matrix Multiplication Properties

(LM)N = L(MN)
LM +N)=LM+ LN
(L+M)N =LN+MN

A(sB)=sAB
MI=IM =M
MN # NM




Transpose

m swap rows and columns

the transpose of M is MT
0 1 2 3
4 5 6 7
M =
8 9 10 11
12 13 14 15
Transpose Properties
(aM) =aM™
M+N) =M"+N"
M) =M

(MN) =N"M"




Determinant

m determinant of a matrix is a scalar value
m usually only need 2x2 and 3x3 matrix determinants
the determinant of M is |M]

my mpy my, mp, my, my
My, my, My,

my, My, My, My My, My,
= MMy Moy, + Mg 1My, My + M, 1 11—

= Mgy My (Mg — M 11, — Mo, 1,11,

Determinant Properties

® for an n X n matrix

\M—l\ =1/|M|
[MN|=|M|N|
‘SM‘ =g" M\

M| =[]




Inverse

m exists only if determinant is nonzero
m multiplicative inverse

MM™ =M"M=1
B properties

(MN)'=N"'M"'

M7y =y
B computing inverse?

Cramer’s rule (we’ll see this soon)

Gaussian elimination and other methods

Cofactor

m need this for Cramer’s rule

m cofactor of matrix element my; is (-1)™ times determinant of the
matrix obtained by deleting row 1 and column j from M

example (adapted from Hill A2.1.5)

2 0 6 0

8 1 -4 0
M =

05 7 0

0 0 0 1




Adjoint
m adjoint is the transpose of matrix of cofactors

27 -56 40 0
30 14 -10 0

6 56 2 0

0 0 0 294

27 30 -6 0

adjoint(M)=C” = 96 14 560
40 -10 2 0

0 0 0 294

cofactor(M)=C =

Cramer’s Rule
m inverse of M is

adjoint(M)

M=
M|




Summary

m in graphics the most commonly used concepts are
2x2, 3x3, and 4x4 matrices
matrix-vector and matrix-matrix multiplication
matrix inverse
m Hill reviews these concepts (and many more) in Appendix 2

Transformations

B in graphics, transformations map vectors to vectors and points to
points
m transformations can be arbitrarily complex but

for efficiency (implementation in geometry pipeline
hardware) need to restrict generality of transformations

m we will study the family of affine transformations




Affine Transformations

m transformation T is said to be affine
T maps vectors to vectors and points to points
T is a linear transformation on vectors
+ T(aui+bv)=aT(u)+bT (V)
T(P+V)=T(P)+T ()

m Hill proves several properties of affine transformations (Section
5.2.7)

m only a few affine transformations
translation
scale
rotation
shear
m all can be represented by a 4x4 matrix

Translation

B moves points by a vector amount

m does not affect vectors (because vectors have no location)

A




Applying Translation

m translation leaves vectors unchanged

v=[x y
1 0
0 1

Tv =
0 0
0 0

S = O O N

o]

m translation moves points by a vector amount
P=|x y z I]T

I 0

TP

Il
S O O
S O

0

S = O

~

X

X X+t
1 PPt
z
1

~  ~

N

- z+t1,
1

[am—

Inverse of Translation

m inverse of a transformation undoes the transformation

e

m checkthat 77'=7T"'T =1




Scale

m enlarge or shrink an object
m scales objects about the x, y, and z-directions
origin is invariant

m if 0 <sx <1, then object shrinks by a factor of sx in x-direction
m if sx > 1, then object grows by a factor of sx in x-direction
m what if sx <0? if sx =0?

Inverse of Scale

m if an object is scaled by a factor of s
then the inverse scales by a factor of 1/s




Shear

B six basic shearing transformations

1 h 0 0] 10 h 0] 1
0100 0100 h
HX: H}CZ: HX:
"71o 0 1 0 001 0f ™o
00 0 1 00 0 1 0
10 0 0] 10 0 0] 1
01 h 0 0100 0
HZ: HZ)C: HZ:
=710 0010 Ao 1 0l 7 |0
00 0 1 00 0 1 0

m first subscript: which coordinate is changed
m second subscript: which coordinate does the shearing

S o = O

S = = O

S~ O O

S = O O

—- O O O

- o O O

Shear Example

m suppose we have h=2 for Hxy
2 00

S

H

1
|0
»=o
0

1
0
0

O =

B invariant points?




Inverse of Shear

m think about it

Rotation

m rotation about x, y, and z-axis
B points on axis of rotation are invariant

B positive angle of rotation causes a counterclockwise rotation
about the axis when you look along the axis towards the origin

J A y-axis

AT~




Rotation (cont)

m three basic rotation matrices (one for each axis)

check that points on the axes of rotation are invariant

1 0 0 0] cos(f3)
R - 0 cos(fB) —sin(B) O B 0
Y10 sin(B) cos(f) O —sin(f)
0 0 0o 1] 0
[cos(B) —sin(8) 0 O]
R - sin(f) cos(ff) 0 O
: 0 0 1 0
0 0 0 1]

0
1
0
0

sin(3)
0

cos(f3)
0

Inverse of Rotation

B rotation matrix is orthogonal

m fact: inverse of an orthogonal matrix is the transpose

for ANY rotation matrix: R =R’
m geometrically

if you rotate about an axis by J degrees then the inverse is a

rotation about the same axis by -3 degrees




Composition or Concatenation of Transformations

m rare to perform only one elementary transformation
m composition of affine transformations is also affine
m order transformations are applied in matters

matrix multiplication does not commute

example: translate then scale vs. scale then translate

s, 0 0 01 0 0 ¢
0 s, 0 00 1 0 ¢]
0 0 s, 0/0 0 1 ¢
0 0 0 1J0 0 0 1
1 00 ¢]s, 0 0 0
010 ¢]0 s 0 0
001 |0 0 s 0
000 0 0 0 1

Composition or Concatenation of Transformations

m reading left to right transformation matrices appear in reverse
order

example: apply A then B then C

Aa=b
Bb=¢
Cé=d
~.d =C(B(A4ad))

overall transformation is 7 = CBA




Composition or Concatenation of Transformations (cont)

m cxample: scale about arbitrary point P = (px, py, pz)
translate P to origin
scale

translate back to original point P

P P

100 pJs. 0 0 01 00 —p,
010 p |0 s, 00[010 —p
001 p. |0 0 s 0001 —p.
000 1]J0o 0 0 1J0 00 1

Composition or Concatenation of Transformations (cont)

m example: rotation about arbitrary axis (hard way)
apply two rotations to align axis with x-axis
+ illustrated right and below y
rotate about x-axis

undo first two rotations

only need 3 parameters y y
to specify a rotation

rotate about z rotate about y




Rotations Revisited

B rotations are common
® many different ways of specifying arbitrary rotation
m cxample: Euler transformations

24 different Euler transformations

head (yaw), pitch, roll is common

R(h, p,r)=R.(r)R.(P)R, (1)
roll

pitch

-Z

from 'Real-Time Rendering' by Moller and Haines

Rotations Revisited (cont)

® Goldman (in Graphics Gems 1)
m for rotation of B degrees about an axis with normalized direction
vector U = (u,,u,,u,)

Cc =
S =
[ =
2
ct+itu, fuu,—su, tuu, +su,
2
R= tuu, +su, ctiu, fuu, —su,

fuu, —su, fwuu, —su, c+ tuz2
0 0 0

- o O O

m don’t bother memorizing this




Affine Transformations and the Determinant

m the determinant of an affine transformation matrix tells you how
much the transformation scales the volume of an object by

if an object D has volume V then applying an affine
transformation M to the object produces a new object with

volume M|V

m you only need to compute the determinant of the upper left 3x3

matrix

Moy Mo My My

M| = My My My My
My, My My My
0 0 0 1
Mo Moy Mg Moy My

==0m, m, m;+0m, m,

My My My, My My

m,

03 00 01

myy|—0m,,  my,

m,

03 00

my|+lmy,  my, omy,

Interpreting Transformations

m we have assumed that affine transformations transform points

and vectors

m this is not the only interpretation

transformation can transform the coordinate frame

+ this is a common interpretation in OpenGL

+ we’ll see this a little later

transformation can transform from one affine space to

another affine space




Affine Transformationsin OpenGL

= OpenGL maintains a stack of transformations called modelview
matrix stack

= severa functions modify the top-of-stack element by
postmultiplying top-of-stack with a matrix
glMatrixMode(GL_MODELVIEW);

glLoadldentity(); /[ tos = |
gIMultMatrixf(N); /l tos = I*N
glMultMatrixf(M); Il tos = I*N*M
glMultMatrixf(L); /I tos = I*N*M*L
glBegin(GL_POINTS);

glVertex3f(x, y, 2); /l transformed by tos
glEnd();

= transformsvertex by N*M*L
m top-of-stack is called current transformation

Trandation, Scale, and Rotation

void glTranslatef(GLfloat x, GLfloat y, GLfloat z);

m postmultiplies current transformation by translation matrix
T(X,y,2)

void glScalef(GLfloat x, GLfloat y, GLfloat z);
= postmultiplies current transformation by scale matrix S(x,y,z)

void glRotatef(GLfloat angle, GLfloat x, GLfloat y, GLfloat z);

m postmultiplies current transformation by rotation matrix
corresponding to rotation of angle degrees about the axis from the
origin to the point (x,y,z)

» OpenGL calls these transformations modeling transformations




Other Affine Transformations

= notice that no shear function

m must specify all 16 values of transformation matrix for “custom”
transformations

OpenGL requires an array with the 16 elements specified like

SO:
m m m m,
m m m My
m M, my, my,
m m, m; Mg
GLfloat S[16]; /I a scale matrix

S[0]=3.0f; S[4]=0.0f S[8]=0.0f; S[12] = 0.0f;
S[1]=0.0f; S[5]=5.0f, S[9]=0.0f; S[13] = 0.0f;
S[2]=0.0f; S[6]=0.0f, S[10] = 7.0f; S[14] = 0.0f;
S[3]=0.0f; S[7]=0.0f, S[11]=0.0f; S[15] = 1.0f;

Other Affine Transformations (cont)

void glLoadMatrixf(const GLfloat* M);
= setsthe 16 values of current transformation matrix to those in the

array M
glMatrixMode(GL_MODELVIEW);
glLoadldentity(); /[ tos =1
glLoadMatrixf(S); /[ tos = I*S

void gIMultMatrixf(const GLfloat* M);
= postmultiplies current transformation by matrix defined by M

= remember: if current matrix is C then current matrix is replaced
with C*M




Thinking About Transformationsin OpenGL

= asingle grand, fixed coordinate system (often called the ‘world’)
matrix multiplications affect position, orientation, and size of
objects
thisis how we' ve been interpreting transformations so far
» transformations are specified in opposite order
= example: rotation followed by trandlation
glMatrixMode(GL_MODELVIEW);
glLoadldentity();
glMultMatrixf( T ); /I or glTranslatef()
glMultMatrixf( R ); I or glRotatef()
/[ draw object here...

= example: sun and planet

Using a Grand, Fixed Coordinate System
day

planet (A\’\)

r \ year
L2

/" sun

= assume Vtﬁé't/we know how to draw a sphere centered at the origin
= thesunisat already at the origin, we just have to draw it

= the planet needs to be transformed to its orientation and position
starting from the origin

rotate by ‘day’ degrees about z-axis
trandate in x-direction by radius of planet’s orbit
rotate by ‘year’ degrees about z-axis




Using a Grand, Fixed Coordinate System (cont)

= in OpenGL
glMatrixMode(GL_MODELVIEW);
drawSun(); /I draws a sphere at the origin with sun size

glRotatef(year, 0.0f, 0.0f, 1.0f);

glTranslatef(orbit, 0.0f, 0.0f);

glRotatef(day, 0.0f, 0.0f, 1.0f);

drawPlanet(); // draws a sphere at the origin with planet size

Using a Local Coordinate System

» instead of aworld coordinate system, consider a coordinate
system local to model

matrix multiplications affect position, orientation, and scale of
local coordinate frame

» transformations appear in “natural” order
m especialy useful for drawing articulated or hierarchical models

shoulder
upper arm

position of objects are
related to one another

elbow

forearm




Using a Local Coordinate System (cont)

®

%
5

drawCircle();  // need to define this

glRotatef(-30.0f, 0.0f, 0.0f, 1.0f);

glTranslatef(5.0f, 0.0f, 0.0f);
drawRectangle(); // need to define this

glTranslatef(5.0f, 0.0f, 0.0f);
drawCircle();

Using a Local Coordinate System (cont)

<y

glRotatef(-60.0f, 0.0f, 0.0f, 1.0f);

glTranslatef(5.0f, 0.0f, 0.0f);
drawRectangle();

10




Using a Local Coordinate System (cont)

m bewareif you use scale transformations when thinking in terms
of alocal coordinate system

gl Scalef() will change the scale of the coordinate axes!

= Wwe can apply an inverse scale (after we're done with the origina
scale) but there is a better way

we can manipulate the matrix stack
o we'll study thisalittle later on

11

Affine Transformations Summary

n affinetransformationsin 3D can be represented with a 4x4
matrix

n four different types of basic affine transformations and their
inverses

trandation, scaling, shear, rotation

= when applying multiple transformations, write matrices from
right to left (if you think of transforming points and vectors)

= remember how to invert a concatenation of transformations

m determinant of an affine transformation matrix tells you the
factor by which the volume of an object changes when you apply
the transformation to the object

12




Representation of Object Surfaces

= most common representation of objectsis polygonal mesh/net

collection of polygons that approximate the outer surface or
skin of the object

13

Representation of Object Surfaces

= modern hardware capable of rendering s mple polygons fast
NVIDIA GeForce2 Ultra: 31 million polygons/s
PlayStation2: more than 60 million polygons/s (raw speed)

o many factors can affect these numbers (polygon size,
image size, lighting, type of shading, etc) so don’'t take
them at face value

= if polygons are small enough (i.e. if sufficiently large number of
polygons are used) resulting images can be realistic

“redlity is 80,000,000 polygons per frame”
o Carpenter, Catmull, and Cook
2.4 hillion polygons per second
o complexity of scenes grows faster than hardware speed
o we're still many years away from this number
14




Lines
= alineis 1-dimensional
has infinite length, but no other dimension
= alineisdefined by 2 noncoincident points P and Q
or by apoint P and a vector paralel to theline
o any point L onalineisgiven by:

L=L(t) PV QO

=PrQ-PY S o) L) L)
=P+vt

=(1-t)P+tQ anaffinesumof points

n L(t) iscaled the parametric form of aline

= can produce afinite line (called aline segment) by restricting the

domain of L(t)
15

Planes

» aplaneis2-dimensiond
has infinite length and width, but no other dimension

= aplane can be defined by 3 noncollinear points P, Q, and R in the
plane

or by a point P and two nonparallel vectors parallel to the
plane

0 any point on the planeis given by:

A= A(s,t)
=P+(Q-P)s+(R-P)t
=P+Us+Vt
=(1-s-t)P+sQ+tR anaffinesumof points

n A(st) isthe parametric form of the plane
16




Planes (cont)

= aplane can also be defined by a point P and a vector
perpendicular to the plane

for every point X in the plane
AX-P)=0
thisis called the point-normal equation of aplane
» thevector ni iscalled the normal vector to the plane
s givenP, Q,and Ritiseasy to compute A

17

Polygons

T
b:c
T

simple simple not simple
planar

= apolygon is an ordered set of points (vertices) with adjacent

points connected by edges (line segments)

polygons are closed: first and last points are connected
= we will use counterclockwise convention (when looking at the

outside surface or front face of the polygon)
= apolygonissimpleif no two edges intersect

= apolygon isplanar if it is mathematically flat (contained by a

plane)

18




Polygons: Turning Angles
(\4
5 fls ) (ls
1 %
1 3— bi 3_
o o

= angle by which you turn at vertex called turning angle
for counterclockwise ordering of vertices
o turn left: turning angle is positive
o turn right: turning angle is negative
» interior angle = 180 — turning angle (degrees)

or Tt - turning angle (radians) 19

Polygons. Turning Angles (cont)
Q 3 C 3

4 4\
1
VAR
= how do you compute the sign of the turning angle?
hint: at vertex P, consider the edge vectors (P-P,_;) and
(Pi+1 - P|)
o now consider the normal vector of the polygon

20




Polygons. Convexity

convex nornconvex

= apolygon isconvex if it has no indentations

any two points in a convex polygon can be connected with a
straight line that never leaves the polygon

al interior angles less than 180 degrees (tTtradians)
al turning angles have same sign

= anonconvex polygon also called concave
21

Polygons. Winding Number

= sum of interior angles = (n-2)* 180 degrees for convex polygon of
n sides
proof:

= sum of turning angles = 360 degrees for convex polygon
proof?

= winding number = (sum of all turning angles) / (360 degrees)
for a convex polygon, the winding number = 1

22




Polygonal Meshes

= many algorithms assume triangular meshes

hardware support

aways convex

aways planar

o polygon normal vector easy to compute
P2 _
N=(R-R)x(F,-R)

, =N

0 N

P

23

Polygonal Meshes. Per Vertex Normal Vectors

= amesh usually approximation for smooth surface
for shading want normal vector of smooth surface

o store this information only at mesh vertices
» example: normal vectors shown as arrows, vertices as dots
« important: normal vectors are perpendicular to “true” smooth
surface

smooth surface

polygonal
approximation

= usually most convenient to store normalized (unit) normal
vectors o




Polygonal Meshes: Operations

= rendering

» simplification
given amesh, compute a new mesh that looks the same as the
old mesh but has fewer vertices and faces

= Smoothing

given amesh, compute a new mesh that |ooks smoother than
the old mesh

= animation or warping
= dlicing
cut amesh into two or more meshes

25

Polygonal Meshes. Operations (cont)

» adjacency relationship queries

Given Find all adjacent
vertices

vertex edges

faces

vertices

edge edges
faces

vertices

face edges

faces

26




Polygonal Meshes: Operations (cont)

= adjacency examples

m vertex Cisadjacent to:
verticessA, B, D, E
edgesb, d, f, g
faces1, 2,3, 4

m edge bisadjacent to:
verticesA, C
edgesa, ¢, d, f, g, and others
faces1, 2

n face 2 isadjacent to:
verticesA, B, C
edgesb, c, d
faces 1, 3, and one other

e

27

Polygonal Meshes: Data Structures

n efficiency
memory or storage
time to access specific geometry

time to perform specific operations (e.g. answer adjacency

query)
of rendering?

= meshes often store
position of vertices (geometry)

how the vertices are connected (topology)
normal direction at vertices (orientation)

o other stuff too
e materia properties
* texture coordinates
 colors

28




Polygonal Meshes: A Simple Data Structure

= meshisacollection of polygons (commonly called faces)
m Simplest data structure stores every face
example for triangle mesh

face | vertex O | norma O | vertex 1 | normal 1 | vertex 2 | normal 2

Xoo Nyoo Xo1 Nyo1 Xop Nyop
0 Yoo Nyoo Yo Nyor Yoo Nyo2
Zo N200 Zoy Ny01 Zy2 )
X10 N0 X1 N1 X12 %P
1 Y10 MNy10 Yu Ny Y12 Ny1>
Z10 Nz10 Zy Ny11 Z1p N;1o

etc

29

Polygonal Meshes: A Simple Data Structure (cont)

m storage requirements
each vertex requires 3 floating point numbers
each vertex normal requires 3 floating point numbers
each face has 3 vertices and 3 vertex normals
o F faces require 18* F floating point numbers
= Vvertices repeated
= normals repeated
= information about edges not explicit
» adjacency operations are inefficient
= rendering straightforward but inefficient

30




Polygonal Meshes: A Simple Data Structure Example

face |vertices normas

0 P,, Py, P, |a, a, 3,

QuQyQ, |3, 3,3,

P RoR,R, |&,a,3

1 Rx' Ry' Rz bx' 1 bz

0 Quw Qy, Q, | by, by, b,
S(l %/l bxv 1 bZ

N
Py)
py)

X
<

0

L
MN-U(ON-UMEI\VJ(O

>~<.O

N
>:O
K3

Kg

v)

NV Ol

L0

tetrahedron is not a smooth surface |3
S0 normal vectors are constant
for each face

<
N
o
o O O
N N

%

o

o O o >~<.(‘J

Lo |LLLHLoLsFs
NO

x
N
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Polygonal Meshes. Shared Vertex Data Structure

= avoid repetitive storage of vertices
store each vertex only once
= requires
vertex list to store geometric information
o store each distinct vertex once
normal list to store orientation information
o store each distinct normal vector once
0 not necessarily equal to number of vertices
face list to store connectivity or topological information

0 each face stores pointers or array indices or identifiersinto
the vertex and normal lists

m thisisthe mesh format Hill uses

32




n vertex list (V vertices)

Polygonal Meshes: Shared Vertex Data Structure (cont)

vertex coordinates
0 X0 Yor 2o
1 X, Y. Zh
V-1 Xv-1 Yv-1r Zva

= normal list (N normal vectors)

normal vector coordinates
0 NXg, NYg, NZ,
1 nxy, Nyy, NZ;

N-1 MXN-10 MYN-10 Mg

33

Polygonal Meshes. Shared Vertex Data Structure (cont)

n facetable (F faces)
note that numbersin vertices and normals columns are for

example only
face vertices vertex normals
0 0,45 0,12
(array indicesinto | (array indicesinto
vertex list) normal list)
1 3,6,9 519
F-1 the vertices of the | the normal vector
facein associated with
counterclockwise each of the
order vertices




Polygonal Meshes: Shared Vertex Data Structure (cont)

= storage requirements?

need relationship between number of vertices and number of
faces

= if the mesh has no holes (e.g. not a doughnut or torus), and if
every edge is shared by exactly two polygons

Eulersformulaa V-E+F=2

0 # vertices—# edges + # faces = 2
triangle mesh: 3F = 2E
under these assumptions:

V-E+F=2

V-3F/2+F=2

V-F/2=2
V=F/2

35

Polygonal Meshes. Shared Vertex Data Structure (cont)

= what about the number of normal vectors?

impossible to say in general, but assumeN =V
the storage requirements are:

3V +3N +6F

=3V +3V +6F

=6V +6F

=3F +6F

=9F

» thisishalf the storage requirement of the first ssimple data
structure
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Polygonal Meshes: Shared Vertex Data Structure Example

0
R
vertex | coordinates norma | coordinates face |vertex |norma
P P, Py, P, a a,a,a 0 P,QR |aaa
Q Qu Q) Q, b b, by, b, 1 R,Q,S|bbb
R R R, R, c Cy Gy, C, 2 R,S P |ccc
S S. S, S, d d,, d,d, 3 QP S |ddd
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