CISC454B: Computer Graphics

- computer graphics is concerned with producing pictures with a computer
 - this is a very broad definition...
- we are interested in three-dimensional computer graphics
 - topics:
 - rendering pipeline
 - mathematical foundations
 - representation of 3D objects
 - ★ camera analogy
 - human vision (brief) and color
 - + lighting, material properties, shading
 - rasterization
 - particle systems
 - + other topics

Administrative Information instructor: Burton Ma office hours: 2:30-3:30pm Mon-Thurs Goodwin 735 course web site www.cs.queensu.ca/home/mab/454.html still under construction text books (not required) Computer Graphics Using OpenGL, 2nd Edition OpenGL Programming Guide, 3rd Edition The C++ Programming Language, Special Edition class notes available online in PDF format generally not complete (examples will be missing)

Administrative Information	n (cont)
programming facilities	
 Walter Light Hall CA 	SLAB
 24 Sun Ultra 10 work 	stations
♦ C++, OpenGL	
 marking do whatever you wan midterm) 	t for 100 marks (must write first
♦ assignments	8 x 6%
	2 x 15%
write a lecture	1 x 10%
◆ final exam	no more than 50%

Administrative Information (cont)
■ assignments
 written and programming
 can work in groups (up to 3 people per group)
 no extensions for any reason
 don't leave them to the last minute
■ midterms
 in class
 Thursday, February 1
 Thursday, March 15
 must write first midterm
 closed book

Administrative Information (cont)

- write a lecture
 - produce a lecture based on a research paper
 - can work with one other person
 - due before last week of class
- exam
 - notes and textbook permitted
- comments
 - don't let math intimidate you
 - don't let C++ intimidate you
 - a lot of work
 - budget your time wisely

Application Stage

- application software e.g. video game, computer assisted design (CAD)
 - any application program that needs to send output to the screen

Application Stage (cont)

- defines:
 - geometry to draw (points, lines, polygons, and others)
 - material properties
 - lighting
 - viewing or camera parameters
- also performs other tasks:
 - user interaction (Hill 1.5 for examples of input devices)
 - animation
 - collision detection
 - speed-up techniques
 - many others
- output is scene to be drawn

Geometry Stage

- performs most per-polygon and per-vertex operations
- implemented in software or hardware
- Hill calls this stage the graphics pipeline (Figures 5.52, 8.18)

• output is transformed geometry, colour and texture information

Rasterizer Stage (cont)

- implemented in hardware
- performs:
 - hidden surface removal
 - texturing
 - compositing
 - stenciling
 - accumulation
- output is image on screen

Summary

- application stage
 - what to draw and how to draw it
- geometry stage
 - computes 3D appearance of scene from viewer/camera point of view
- rasterizer stage
 - draws 2D screen image

Mathematics for Computer Graphics

- in this course we rely mostly on simple linear algebra
 - more advanced graphics techniques also rely on calculus, statistics, numerical methods
- most of polygon-based computer graphics uses vectors and points defined in 3-dimensional real Cartesian space
- most common family of transformations represented by 4x4 matrix

Vectors

- R³ is the 3-dimensional real Euclidean space
- vector in R³ is a 3-tuple of real numbers

$\vec{v} = (v_0, v_1, v_2)$	$\vec{w} = (1, 1, -1)$
$\begin{bmatrix} v_0 \end{bmatrix}$	$\begin{bmatrix} 1 \end{bmatrix}$
$= v_1 $	= 1
$\begin{bmatrix} v_2 \end{bmatrix}$	$\lfloor -1 \rfloor$
$= \begin{bmatrix} v_0 & v_1 & v_2 \end{bmatrix}^T$	$= \begin{bmatrix} 1 & 1 & -1 \end{bmatrix}^T$

Vector Properties

 $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$ associative $\vec{u} + \vec{v} = \vec{v} + \vec{u}$ commutative $\vec{0} + \vec{v} = \vec{v}$ zero identity $\vec{v} + (-\vec{v}) = \vec{0}$ additive inverse associative $(ab)\vec{u} = a(b\vec{u})$ distributive $(a+b)\vec{u} = a\vec{u} + b\vec{u}$ distributive $a(\vec{u} + \vec{v}) = a\vec{u} + a\vec{v}$ multiplicative identity $1\vec{u} = \vec{u}$

Dot Product

■ Hill 4.3

- in Euclidean space dot product (inner product) is defined
 - $d = \vec{a} \cdot \vec{b}$ = $\begin{bmatrix} a_0 & a_1 & a_2 \end{bmatrix} \cdot \begin{bmatrix} b_0 & b_1 & b_2 \end{bmatrix}$ = $a_0 b_0 + a_1 b_1 + a_2 b_2$

■ properties

 $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} \qquad \text{symmetry} \\ (\vec{a} + \vec{c}) \cdot \vec{b} = \vec{a} \cdot \vec{b} + \vec{c} \cdot \vec{b} \qquad \text{linearity} \\ (s\vec{a}) \cdot \vec{b} = s(\vec{a} \cdot \vec{b}) \qquad \text{homogeneity} \\ \left| \vec{b} \right|^2 = \vec{b} \cdot \vec{b} \qquad \text{magnitude} \end{cases}$

Vector Norm

■ norm or magnitude of vector defined as

$$\vec{a} \mid = \sqrt{\vec{a} \cdot \vec{a}} = \sqrt{a_0^2 + a_1^2 + a_2^2}$$

example

$$\begin{bmatrix} 3 & 0 & -4 \end{bmatrix}^T = \sqrt{3^2 + 0^2 + (-4)^2} = 5$$

■ in Euclidean space gives us notion of length or distance

■ a unit vector has norm of 1

important!

- to normalize a vector divide by its norm
- example: normalize $\begin{bmatrix} 3 & 0 & -4 \end{bmatrix}^T$

$$\frac{\begin{bmatrix}3 & 0 & -4\end{bmatrix}^T}{5} = \begin{bmatrix}0.6 & 0 & -0.8\end{bmatrix}^T$$

Direction (cont) • can write any vector as a linear combination of basis vectors $\begin{bmatrix} -3 \\ 2 \\ 7 \end{bmatrix} = -3\vec{i} + 2\vec{j} + 7\vec{k}$

Cross Product

- Hill 4.4
- only defined in R³
 - defined in terms of standard basis

$$\vec{a} \times \vec{b} = \begin{bmatrix} a_x & a_y & a_z \end{bmatrix}^T \times \begin{bmatrix} b_x & b_y & b_z \end{bmatrix}^T$$
$$(a_y b_z - a_z b_y)\vec{i} + a_z a_x b_z \vec{j} + a_z a_x b_z \vec{j} + a_x a_y a_y \vec{k} = \vec{c}$$

Cross Product (cont)

properties

$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$
antisymmetry

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$
linearity

$$(s\vec{a}) \times \vec{b} = s(\vec{a} \times \vec{b})$$
homogeneity

$$\vec{i} \times \vec{j} = \vec{k}$$

$$\vec{j} \times \vec{k} = \vec{i}$$

$$\vec{k} \times \vec{i} = \vec{j}$$

Homogeneous Representation

■ points and vectors are different objects but they look the same

 $P = \begin{bmatrix} x & y & z \end{bmatrix}^T \qquad \qquad \vec{v} = \begin{bmatrix} x & y & z \end{bmatrix}^T$

homogeneous representation of points and vectors distinguishes between points and vectors

Homogeneous Representation (cont) • the difference becomes clear when we consider the frame $P = \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} & O \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = x\vec{i} + y\vec{j} + z\vec{k} + O$ $\vec{v} = \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} & O \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 0 \end{bmatrix} = x\vec{i} + y\vec{j} + z\vec{k}$ • notice that • vector = linear combination of vectors • point = vector + point

Homogeneous Representation (cont)

- to go from ordinary to homogeneous coordinates
 - if the object is a point, append a 1
 - if the object is a vector, append a 0
- to go from homogeneous to ordinary coordinates
 - if the object is a point, delete the 1
 - this rule will change later on
 - if the object is a vector, delete the 0

Points in OpenGL

- OpenGL represents a point with a set of floating-point numbers called a vertex
- to draw a group of points use

GLfloat x0, y0, z0, x1, y1, z1, xn, yn, zn; // assign values to x0, y0, z0, etc. here // ... glBegin(GL_POINTS); glVertex3f(x0, y0, z0); // point with coordinates (x0, y0, z0) glVertex3f(x1, y1, z1); // and so on... glVertex3f(xn, yn, zn); glEnd();

■ every call to glVertex() sends a vertex down the geometry stage

Points in OpenGL (cont)

- many versions of glVertex() void glVertex3f(...)
- number (here 3) indicates number of coordinates
 - can be 2, 3, or 4
- letter (here f) indicates data type
 - can be
 - ⋆ s GLshort
 - ⋆ i GLint
 - ♦ f GLfloat
 - + d GLdouble

■ examples:

glVertex2i(3, 4); glVertex3f(-1.0f, 2.0f, 3.5f); glVertex4d(1.2, 4.5, 3.9, 1.0);

Points in OpenGL (cont) I glVertex() can also take an array as an argument add a "v" to the function name example: GLint one_pt[3] = { 1, 2, 3 }; GLdouble two_pts[6]; two_pts[0] = 1.0; two_pts[1] = 2.0; two_pts[2] = 3.0; two_pts[3] = 3.0; two_pts[4] = 2.0; two_pts[5] = 1.0; glBegin(GL_POINTS); glVertex3iv(one_pt); glVertex3dv(two_pts+3); // point (1.0, 2.0, 3.0) glEnd();

Matrices

■ only need 3x3 and 4x4 matrices

$$M = \begin{bmatrix} m_{00} & m_{01} & m_{02} \\ m_{10} & m_{11} & m_{12} \\ m_{20} & m_{21} & m_{22} \end{bmatrix} \qquad M = \begin{bmatrix} m_{00} & m_{00} & m_{00} & m_{00} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \\ m_{30} & m_{31} & m_{32} & m_{33} \end{bmatrix}$$

■ identity matrix

	Γ1	0	~7		[1	0	0	0
•		0	0	Ŧ	0	1	0	0
1 =	0	I	0	1 =	0	0	1	0
	0	0	1		0	0	0	1

Matrix Vector Multiplication

■ can postmultiply a matrix with a column vector

$$\begin{array}{cccc} m_{00} & m_{01} & m_{02} \\ m_{10} & m_{11} & m_{12} \\ m_{20} & m_{21} & m_{22} \end{array} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} m_{00}x + m_{01}y + m_{02}z \\ m_{10}x + m_{11}y + m_{12}z \\ m_{20}x + m_{21}y + m_{22}z \end{bmatrix}$$

Matrix Multiplication

- can multiply two 3x3 or two 4x4 matrices together
 - just treat second matrix like 3 or 4 vectors

Matrix Multiplication Properties

(LM)N = L(MN)L(M+N) = LM + LN(L+M)N = LN + MNA(sB) = sABMI = IM = M $MN \neq NM$

Transpose

swap rows and columns
 the transpose of *M* is *M^T*

$$M = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 4 & 5 & 6 & 7 \\ 8 & 9 & 10 & 11 \\ 12 & 13 & 14 & 15 \end{bmatrix}$$

Transpose Properties $(aM)^{T} = aM^{T}$ $(M + N)^{T} = M^{T} + N^{T}$ $(M^{T})^{T} = M$ $(MN)^{T} = N^{T}M^{T}$

Determinant

- determinant of a matrix is a scalar value
- usually only need 2x2 and 3x3 matrix determinants
 - the determinant of M is |M|

$$|M| = \begin{vmatrix} m_{00} & m_{01} & m_{02} \\ m_{10} & m_{11} & m_{12} \\ m_{20} & m_{21} & m_{22} \end{vmatrix}$$
$$= m_{00} \begin{vmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{vmatrix} - m_{01} \begin{vmatrix} m_{10} & m_{12} \\ m_{20} & m_{22} \end{vmatrix} + m_{02} \begin{vmatrix} m_{10} & m_{11} \\ m_{20} & m_{21} \end{vmatrix}$$
$$= m_{00} m_{11} m_{22} + m_{01} m_{12} m_{20} + m_{02} m_{10} m_{21} - m_{02} m_{11} m_{20} - m_{01} m_{10} m_{22} - m_{00} m_{12} m_{21}$$

Inverse

- exists only if determinant is nonzero
- multiplicative inverse

 $MM^{-1} = M^{-1}M = I$

properties

$$(MN)^{-1} = N^{-1}M^{-1}$$

 $(M^{T})^{-1} = (M^{-1})^{T}$

- computing inverse?
 - Cramer's rule (we'll see this soon)
 - Gaussian elimination and other methods

Cofactor

- need this for Cramer's rule
- cofactor of matrix element m_{ij} is (-1)^{i+j} times determinant of the matrix obtained by deleting row i and column j from M
 - example (adapted from Hill A2.1.5)

$$M = \begin{bmatrix} 2 & 0 & 6 & 0 \\ 8 & 1 & -4 & 0 \\ 0 & 5 & 7 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Adjoint

adjoint is the transpose of matrix of cofactors $\operatorname{cofactor}(M) = C = \begin{bmatrix} 27 & -56 & 40 & 0\\ 30 & 14 & -10 & 0\\ -6 & 56 & 2 & 0\\ 0 & 0 & 0 & 294 \end{bmatrix}$ $\operatorname{adjoint}(M) = C^{T} = \begin{bmatrix} 27 & 30 & -6 & 0\\ -56 & 14 & 56 & 0\\ 40 & -10 & 2 & 0\\ 0 & 0 & 0 & 294 \end{bmatrix}$

Summary

- in graphics the most commonly used concepts are
 - 2x2, 3x3, and 4x4 matrices
 - matrix-vector and matrix-matrix multiplication
 - matrix inverse
- Hill reviews these concepts (and many more) in Appendix 2

Transformations

- in graphics, transformations map vectors to vectors and points to points
- transformations can be arbitrarily complex but
 - for efficiency (implementation in geometry pipeline hardware) need to restrict generality of transformations
- we will study the family of affine transformations

Affine Transformations

- transformation T is said to be affine
 - T maps vectors to vectors and points to points
 - T is a linear transformation on vectors

+ $T(a\vec{u}+b\vec{v}) = aT(\vec{u}) + bT(\vec{v})$

- $T(P+\vec{v}) = T(P) + T(\vec{v})$
- Hill proves several properties of affine transformations (Section 5.2.7)
- only a few affine transformations
 - translation
 - scale
 - \blacklozenge rotation
 - shear
- all can be represented by a 4x4 matrix

Applying Translation

■ translation leaves vectors unchanged

$\vec{v} =$	[<i>x</i>	y	Z	$0]^T$				
	[1	0	0	t_x	$\begin{bmatrix} x \end{bmatrix}$		x	
	0	1	0	t_y	<i>y</i>		y	
IV =	0	0	1	t_z	z	-	Z	
	0	0	0	1	0		0	

■ translation moves points by a vector amount

у	Z	1] ^T			
0	0	t_x	$\int x^{-}$]	$\begin{bmatrix} x+t_x \end{bmatrix}$
1	0	t_y	y		$y + t_y$
0	1	t_z	z	=	$z+t_z$
0	0	1	1		1
	y 0 1 0 0	$\begin{array}{ccc} y & z \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{array}$	$\begin{array}{cccc} y & z & 1 \end{bmatrix}^{T} \\ 0 & 0 & t_{x} \\ 1 & 0 & t_{y} \\ 0 & 1 & t_{z} \\ 0 & 0 & 1 \end{array}$	$\begin{array}{cccc} y & z & 1 \end{bmatrix}^{T} \\ 0 & 0 & t_{x} \\ 1 & 0 & t_{y} \\ 0 & 1 & t_{z} \\ 0 & 0 & 1 \end{array} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$	$\begin{array}{cccc} y & z & 1 \\ 0 & 0 & t_x \\ 1 & 0 & t_y \\ 0 & 1 & t_z \\ 0 & 0 & 1 \end{array} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} =$

- enlarge or shrink an object
- scales objects about the x, y, and z-directions
 - origin is invariant

- if 0 < sx < 1, then object shrinks by a factor of sx in x-direction
- if sx > 1, then object grows by a factor of sx in x-direction
- what if sx < 0? if sx = 0?

Shear												
■ six basic	c sh	eari	ng tr	ansform	atic	ons						
[1	h	0	0]		[1	0	h	0]	[1	0	0	0]
H = 0	1	0	0	И _	0	1	0	0	H = h	1	0	0
$ 1_{xy} = 0$	0	1	0	m_{xz} –	0	0	1	0	$ _{yx} - _{0}$	0	1	0
$\lfloor 0$	0	0	1		0	0	0	1	0	0	0	1
[1	0	0	0]		[1	0	0	0]	[1	0	0	0]
	1	h	0	11	0	1	0	0	0	1	0	0
$H_{yz} = 0$	0	1	0	$H_{zx} =$	h	0	1	0	$H_{zy} = 0$	h	1	0
0	0	0	1		0	0	0	1	0	0	0	1
■ first sub	scri	pt: v	whic	h coordi	nat	e is	cha	nged				
■ second s	subs	scrip	ot: w	hich coc	ordi	nate	do	es the	e shearing			

■ think about it

<text>

Rotation (cont)

■ three ◆ cl	e basic i heck th	rotatic at poi	on matr	ices the a	(or axes	ne for ea s of rota	ach axis) ation are ir	ivar	iant		
$R_x =$	$\begin{bmatrix} 1 \\ 0 & co \\ 0 & sin \\ 0 \end{bmatrix}$	$0 \\ s(\beta) \\ n(\beta) \\ 0$	$0 - \sin(0) \cos(0)$	β) 3)	0 0 0 1	$R_y =$	$\begin{bmatrix} \cos(\beta) \\ 0 \\ -\sin(\beta) \\ 0 \end{bmatrix}$	0 1 0 0		0 0 0 1	
$R_z =$	$\begin{bmatrix} \cos(\beta) \\ \sin(\beta) \\ 0 \\ 0 \end{bmatrix}$) —s) co	$\sin(\beta)$ $\cos(\beta)$ 0 0	0 0 1 0	0 0 0 1						

Inverse of Rotation

- rotation matrix is orthogonal
- fact: inverse of an orthogonal matrix is the transpose
 - for ANY rotation matrix: $R^{-1} = R^T$
- geometrically
 - if you rotate about an axis by β degrees then the inverse is a rotation about the same axis by $-\beta$ degrees

Composition or Concatenation of Transformations

- reading left to right transformation matrices appear in reverse order
 - example: apply A then B then C

$$A\vec{a} = \vec{b}$$

$$B\vec{b} = \vec{c}$$

$$C\vec{c} = \vec{d}$$

$$\therefore \vec{d} = C(B(A\vec{a}))$$

• overall transformation is T = CBA

Rotations Revisited (cont)

- Goldman (in Graphics Gems 1)
- for rotation of β degrees about an axis with normalized direction vector $\vec{u} = (u_x, u_y, u_z)$
 - c = s = t = $R = \begin{bmatrix} c + tu_x^2 & tu_x u_y su_z & tu_x u_z + su_y & 0 \\ tu_x u_y + su_z & c + tu_y^2 & tu_y u_z su_x & 0 \\ tu_x u_z su_y & tu_y u_z su_x & c + tu_z^2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
- don't bother memorizing this

Interpreting Transformations

- we have assumed that affine transformations transform points and vectors
- this is not the only interpretation
 - transformation can transform the coordinate frame
 - + this is a common interpretation in OpenGL
 - ♦ we'll see this a little later
 - transformation can transform from one affine space to another affine space

Translation, Scale, and Rotation

void glTranslatef(GLfloat x, GLfloat y, GLfloat z);

• postmultiplies current transformation by translation matrix T(x,y,z)

void glScalef(GLfloat x, GLfloat y, GLfloat z);

• postmultiplies current transformation by scale matrix S(x,y,z)

void glRotatef(GLfloat angle, GLfloat x, GLfloat y, GLfloat z);

- postmultiplies current transformation by rotation matrix corresponding to rotation of angle degrees about the axis from the origin to the point (x,y,z)
- OpenGL calls these transformations modeling transformations

Other Affine Transformations

- notice that no shear function
- must specify all 16 values of transformation matrix for "custom" transformations
 - OpenGL requires an array with the 16 elements specified like so:

 $\begin{bmatrix} m_0 & m_4 & m_8 & m_{12} \\ m_1 & m_5 & m_9 & m_{13} \\ m_2 & m_6 & m_{10} & m_{14} \\ m_3 & m_7 & m_{11} & m_{15} \end{bmatrix}$ GLfloat S[16]; // a scale matrix S[0] = 3.0f; S[4] = 0.0f; S[8] = 0.0f; S[12] = 0.0f; S[1] = 0.0f; S[5] = 5.0f; S[9] = 0.0f; S[13] = 0.0f; S[2] = 0.0f; S[6] = 0.0f; S[10] = 7.0f; S[14] = 0.0f; S[3] = 0.0f; S[7] = 0.0f; S[11] = 0.0f; S[15] = 1.0f;

3

Other Affine Transformations (cont)

void glLoadMatrixf(const GLfloat* M);

■ sets the 16 values of current transformation matrix to those in the array M

glMatrixMode(GL_MODELVIEW); glLoadIdentity(); // tos = I glLoadMatrixf(S); // tos = I*S

void glMultMatrixf(const GLfloat* M);

- postmultiplies current transformation by matrix defined by M
- remember: if current matrix is C then current matrix is replaced with C*M

Using a Grand, Fixed Coordinate System (cont)

■ in OpenGL

glMatrixMode(GL_MODELVIEW); drawSun(); // draws a sphere at the origin with sun size glRotatef(year, 0.0f, 0.0f, 1.0f); glTranslatef(orbit, 0.0f, 0.0f); glRotatef(day, 0.0f, 0.0f, 1.0f); drawPlanet(); // draws a sphere at the origin with planet size

Using a Local Coordinate System (cont)

- beware if you use scale transformations when thinking in terms of a local coordinate system
 - glScalef() will change the scale of the coordinate axes!
- we can apply an inverse scale (after we're done with the original scale) but there is a better way
 - we can manipulate the matrix stack
 - ✤ we'll study this a little later on

11

Affine Transformations Summary

- affine transformations in 3D can be represented with a 4x4 matrix
- four different types of basic affine transformations and their inverses
 - translation, scaling, shear, rotation
- when applying multiple transformations, write matrices from right to left (if you think of transforming points and vectors)
- remember how to invert a concatenation of transformations
- determinant of an affine transformation matrix tells you the factor by which the volume of an object changes when you apply the transformation to the object

Representation of Object Surfaces

- modern hardware capable of rendering simple polygons fast
 - NVIDIA GeForce2 Ultra: 31 million polygons/s
 - PlayStation2: more than 60 million polygons/s (raw speed)
 - many factors can affect these numbers (polygon size, image size, lighting, type of shading, etc) so don't take them at face value
- if polygons are small enough (i.e. if sufficiently large number of polygons are used) resulting images can be realistic
 - "reality is 80,000,000 polygons per frame"
 - ◆ Carpenter, Catmull, and Cook
 - 2.4 billion polygons per second
 - ✤ complexity of scenes grows faster than hardware speed
 - we're still many years away from this number

Lines

- a line is 1-dimensional
 - has infinite length, but no other dimension
- a line is defined by 2 noncoincident points P and Q
 - or by a point P and a vector parallel to the line
 - * any point L on a line is given by:

- \blacksquare L(t) is called the parametric form of a line
- can produce a finite line (called a line segment) by restricting the domain of L(t)

```
15
```

Planes

- a plane is 2-dimensional
 - has infinite length and width, but no other dimension
- a plane can be defined by 3 noncollinear points P, Q, and R in the plane
 - or by a point P and two nonparallel vectors parallel to the plane
 - * any point on the plane is given by:

$$A = A(s,t)$$

= P + (Q - P)s + (R - P)t
= P + \vec{u}s + \vec{v}t

- =(1-s-t)P+sQ+tR an affine sum of points
- A(s,t) is the parametric form of the plane

- many algorithms assume triangular meshes
 - hardware support
 - always convex
 - always planar
 - polygon normal vector easy to compute

o lygonal M adjacency	<i>Teshes: Operations</i> relationship querie	(<i>cont</i>) s	
	Given	Find all adjacent	
		vertices	
	vertex	edges	
		faces	
		vertices	
	edge	edges	
		faces	
		vertices	
	face	edges	
		faces	

Polygonal Meshes: Data Structures	
■ efficiency	
 memory or storage 	
 time to access specific geometry 	
 time to perform specific operations (e.g. answer adjacency query) 	
• of rendering?	
meshes often store	
 position of vertices (geometry) 	
how the vertices are connected (topology)	
 normal direction at vertices (orientation) 	
◆ other stuff too	
material properties	
texture coordinates	
• colors	28

Polygonal Meshes: A Simple Data Structure

- mesh is a collection of polygons (commonly called faces)
- simplest data structure stores every face

face	vertex 0	normal 0	vertex 1	normal 1	vertex 2	normal 2
	x ₀₀	n _{x00}	x ₀₁	n _{x01}	x ₀₂	n _{x02}
0	y ₀₀	n _{y00}	y ₀₁	n _{y01}	y ₀₂	n _{y02}
	Z ₀₀	n _{z00}	Z ₀₁	n _{z01}	Z ₀₂	n _{z02}
	x ₁₀	n _{x10}	x ₁₁	n _{x11}	x ₁₂	n _{x12}
1	y ₁₀	n _{y10}	y ₁₁	n _{y11}	y ₁₂	n _{y12}
	z ₁₀	n _{z10}	z ₁₁	n _{z11}	z ₁₂	n _{z12}
etc						

example for triangle mesh

Polygonal Meshes: A Simple Data Structure (cont)

- storage requirements
 - each vertex requires 3 floating point numbers
 - each vertex normal requires 3 floating point numbers
 - each face has 3 vertices and 3 vertex normals
 - ✤ F faces require 18*F floating point numbers
- vertices repeated
- normals repeated
- information about edges not explicit
- adjacency operations are inefficient
- rendering straightforward but inefficient

30

Polygonal Meshes: Shared V	Vertex Data Structure (cont)	
■ vertex list (V vertices)		
vertex	coordinates	
0	x ₀ , y ₀ , z ₀	
1	x ₁ , y ₁ , z ₁	
V-1	x _{V-1} , y _{V-1} , z _{V-1}	
 normal list (N normal vect 	ors)	
normal vector	coordinates	
0	nx ₀ , ny ₀ , nz ₀	
1	nx_1, ny_1, nz_1	
N-1	$nx_{N-1}, ny_{N-1}, nz_{N-1}$	

 $nx_{N-1}, ny_{N-1}, nz_{N-1}$

Pol	ygonal Meshes: Sha	red Vertex Data Str	ucture (cont)	
∎ f	 ace table (F faces) note that numbers example only 	in vertices and norm	als columns are for	
	face	vertices	vertex normals	
	0	0, 4, 5 (array indices into vertex list)	0, 1, 2 (array indices into normal list)	
	1	3, 6, 9	5, 1, 9	
	F-1	the vertices of the face in counterclockwise order	the normal vector associated with each of the vertices	3

