4. Now consider a simple kinematic model of an idealized *bicycle*. Both tires are of diameter *d*, and are mounted to a frame of length *l*. The front tire can swivel around a vertical axis, and its steering angle will be denoted *α*. The rear tire is always parallel to the bicycle frame and cannot swivel.

For the sake of this exercise, the pose of the bicycle shall be defined through three variables: the *x*-*y* location of the center of the front tire, and the angular orientation θ (yaw) of the bicycle frame relative to an external coordinate frame. The controls are the forward velocity *v* of the bicycle, and the steering angle α , which we will assume to be constant during each prediction cycle.

Provide the mathematical prediction model for a time interval Δt , assuming that it is subject to Gaussian noise in the steering angle α and the forward velocity v. The model will have to predict the posterior of the bicycle state after Δt time, starting from a known state. If you cannot find an exact model, approximate it, and explain your approximations.

5. Consider the kinematic bicycle model from Exercise 4. Implement a sampling function for posterior poses of the bicycles under the same noise assumptions.

For your simulation, you might assume l = 100cm, d = 80cm, $\Delta t = 1sec$, $|\alpha| \leq 80^{\circ}$, $v \in [0; 100]cm/sec$. Assume further that the variance of the steering angle is $\sigma_{\alpha}^2 = 25^{\circ 2}$ and the variance of the velocity is $\sigma_v^2 = 50cm^2/sec^2 \cdot v^2$. Notice that the variance of the velocity depends on the commanded velocity.

For a bicycle starting at the origin, plot the resulting sample sets for the following values of the control parameters:

problem number	α	v
1	25°	20 cm/sec
2	-25°	20 cm/sec
3	25°	90 cm/sec
4	80°	10 cm/sec
1	85°	90cm/sec

All your plots should show coordinate axes with units.

6. Consider once again the kinematic bicycle model from Exercise 4. Given an initial state x, y, θ and a final x' and y' (but no final θ'), provide a mathematical formula for determining the most likely values of α , v, and θ' . If