CSE4421/5324: Assignment 2

Burton Ma
Posted: Thu Feb 09, 2012
Due: Fri Mar 02, 2012

The Denavit-Hartenberg parameters for the A150/255 robot shown in the figure are

	a	α	d	θ
1	0	90	$10(254)$	θ_{1}
2	$10(254)$	0	0	θ_{2}
3	$10(254)$	0	0	θ_{3}
4	0	-90	0	$\theta_{4}-90$
5	0	0	$2(50.8)$	θ_{5}

Figure 1: Frame locations for the A150 and A255 robots. The A150 uses dimensions in inches, and the A255 uses dimensions in millimeters. The wrist center o_{c} is located at the origin of frames 3 and 4 .

1. Derive the matrix T_{5}^{3} using the DH parameters; you will need the individual matrix entries for the next step.
2. Solve the inverse kinematics problem for the wrist; i.e., given T_{5}^{3} solve for the values of θ_{4} and θ_{5}.
3. Solve the inverse kinematics problem for the first three joints given the wrist center $o_{c}^{0}=\left[\begin{array}{lll}x_{c} & y_{c} & z_{c}\end{array}\right]^{T}$; i.e., given o_{c}^{0} solve for the values of θ_{1}, θ_{2}, and θ_{3}. Try to find all of the possible solutions (i.e., find all
solutions disregarding the physical constraints on the joint angles), and then indicate which set applies to the A150/255 arm.
4. In Matlab implement the method with signature move (T) that takes as input a 4×4 matrix $T=T_{5}^{0}$ describing the pose of the gripper (expressed in the base frame of the robot); the function should then move the gripper to the input pose, or output a message indicating that the position is not reachable. The motion can be accomplished using a single invocation of madeg; i.e., you do not need to compute a trajectory.

Consider adding a method that solves the inverse kinematics problem for the arm, rather than putting all of the inverse kinematics code inside of move; see the next step of this assignment.
5. In Matlab implement a method with signature moveLinear (T) that takes as input a 4×4 matrix $T=T_{5}^{0}$ describing the pose of the gripper (expressed in the base frame of the robot); the function should then move the gripper to the input pose, or output a message indicating that the pose is not reachable.

The wrist center should move in a straight line from the current position, whereas the gripper orientation should change smoothly over the complete path; i.e., angles $\theta_{1}-\theta_{3}$ should produce a straight line Cartesian path, and angles θ_{4} and θ_{5} should produce a joint space path.

Everyone should hand in paper copies of Parts 1-3, and Parts 4 and 5 can be done in pairs. Submit your Matlab code using the command

```
submit 4421 a2 *.m
```

